

AX series programmable controller software manual Change History

No. Change description Version Release date

1 First release V1.0 September 2020

2

1. Modified the variables PLC and ErrorID to

setError and getError in Table 4-1.

2. Updated the remarks of inTime and inDate in

Table 4-1 and Table 4-2.

3. Updated the variable definition table in A.1.1.1,

A.1.2.1, and A.2.1.1.

V1.1 June 2021

3

1. Added a Table 3-2 " Example of bit, byte, word,

and double word correspondence of AX series

controllers" and updated the data in Table 3-1 and

Table 3-3.

2. Updated the section 5.2, changing the "error

code" to "fault code".

3. Added the description of PC communication

configuration for Windows10 when the hardware is

connected with Mini USB cable in section 2.3.

V1.2 November 2021

AX series programmable controller software manual Preface

i

Preface

Thank you for using the AX series programmable controller (programmable controller for short).

This manual contains the information required to use the AX series programmable controllers. Please read this manual

carefully before using the product. Then you can fully understand the functions, performance, and system build-up, which

helps to give full play to the advanced performance.

Target audience

Personnel with electrical professional knowledge (such as qualified electrical engineers or personnel with equivalent

knowledge)

Applicable product

AX70 programmable controller

AX71 programmable controller

AX series programmable controller expansion modules

Online support

You can also obtain product documentation and technical support from INVT website:

http://www.invt.com

If the product is ultimately used for military affairs or weapon manufacture, abide by the export control regulations in the

Foreign Trade Law of the People's Republic of China and complete related formalities.

The manual is subject to change without prior notice.

http://www.invt.com/solutions/

AX series programmable controller software manual Contents

ii

Contents

Preface .. i

Target audience .. i

Applicable product... i

Online support ... i

Contents ... ii

 Product Introduction .. 1 1

1.1 AX70 series programmable controller .. 1

1.1.1 Overview .. 1

1.1.2 Product configuration and module description ... 1

1.1.3 System application process ... 2

1.2 Programming platform .. 3

1.2.1 Invtmatic Studio ... 3

1.2.2 Software programming interface .. 3

1.3 PLCopen specification ... 3

 Getting Started ... 4 2

2.1 Software installation and uninstallation .. 4

2.1.1 Software obtaining ... 4

2.1.2 Software installation requirements ... 4

2.1.3 Preparing ... 4

2.1.4 Installing the software .. 4

2.1.5 Uninstalling the software .. 8

2.2 AX70 series hardware connection .. 8

2.3 PC communication configuration.. 9

2.4 Project creation .. 15

2.4.1 Starting the programming environment .. 15

2.4.2 Creating new project .. 17

2.5 Typical steps of project writing ... 18

2.6 Examples of program writing and debugging ... 19

2.6.1 Adding devices ... 19

2.6.2 Writing a function to handle POU ... 21

2.6.3 Setting motor parameters... 21

2.6.4 Writing motor positive and reverse ... 23

2.6.5 Compiling user program ... 24

2.6.6 Running monitor program .. 25

 Network Configuration ... 26 3

3.1 ModbusTCP ... 26

3.1.1 ModbusTCP_Master .. 26

3.1.2 ModbusTCP_Slave .. 26

3.2 ModbusRTU ... 27

3.2.1 ModbusRTU_Master .. 27

3.2.2 ModbusRTU_Slave .. 27

3.3 EtherCAT master node ... 27

3.4 CANopen ... 29

3.4.1 CANopen master node configuration ... 30

3.4.2 Parameter configuration of CANopen master .. 31

 Module Configuration .. 33 4

4.1 CPU module ... 33

AX series programmable controller software manual Contents

iii

4.2 High speed I/O module .. 34

4.2.1 Creating high speed I/O module project ... 34

4.2.2 Function description of input port ... 36

4.2.3 Output Port Function Description ... 42

4.2.4 High-speed I/O mapping table ... 45

4.2.5 Interrupt instruction .. 50

4.3 Digital input/output module ... 57

4.3.1 Creating a project for digital input/output module ... 57

4.3.2 Variable definition and use ... 58

4.4 Analog input/output module .. 58

4.4.1 Creating a project for analog input/output module ... 58

4.4.2 Variable definition and use ... 59

4.5 Temperature module .. 59

4.5.1 Creating a project for temperature module... 59

4.5.2 Variable definition and use ... 60

4.5.3 Temperature module .. 60

4.6 Communication module ... 64

4.6.1 Digital input module ... 66

4.6.2 Digital output module ... 66

4.6.3 Analog input module .. 67

4.6.4 Analog output module .. 68

4.6.5 Temperature module .. 70

4.7 Priority setting of each module (recommended value) ... 74

4.7.1 Setting priority .. 74

4.7.2 Configuring sub-device bus cycle options .. 75

 Device Diagnosis ... 76 5

5.1 Fault indicator... 76

5.1.1 System and bus fault indicator ... 76

5.1.2 High-speed input/output indicator .. 76

5.2 Fault code .. 77

 Controller Program Structure and Execution .. 82 6

6.1 Program structure .. 82

6.2 Task .. 82

6.3 Program execution ... 83

6.4 Task execution type .. 86

6.5 Task priority .. 87

6.6 Operation of multiple subprograms .. 90

 EtherCAT Bus Motion Control ... 92 7

7.1 EtherCAT operation principle ... 92

7.1.1 Protocol introduction .. 92

7.1.2 Work counter WKC .. 92

7.1.3 Addressing mode ... 93

7.1.4 Distributed clocks ... 97

7.1.5 EtherCAT cable redundancy .. 100

7.2 EtherCAT communication mode ... 100

7.2.1 Periodic process data communication ... 100

7.2.2 Non-periodic mailbox data communication .. 103

7.3 EtherCAT state machine .. 104

7.4 EtherCAT servo drive controller application protocol .. 106

7.4.1 EtherCAT-based CAN application protocol (CoE) .. 106

7.4.2 Servo drive profile according to IEC 61800-7-204 (SERCOS) .. 111

AX series programmable controller software manual Contents

iv

 Application Programming.. 116 8

8.1 Single axis control .. 116

8.1.1 Single axis control programming description .. 116

8.1.2 MC function blocks commonly used for single-axis control .. 116

8.2 Cam synchronization control .. 117

8.2.1 Periodic mode of the cam table .. 118

8.2.2 Input method of cam table.. 119

8.2.3 Data structure of cam table .. 119

8.2.4 CAM table reference and switch .. 120

Appendix A Function module command ... 121

A.1 ModbusRTU command library ... 121

A.1.1 Definition and use of ModbusRTU master command library variables .. 121

A.1.2 Definition and use of ModbusRTU slave library variables.. 123

A.2 ModbusTCP command library ... 125

A.2.1 Definition and use of ModbusTCP master command library variables... 125

A.2.2 Definition and use of ModbusTCP slave command library variables ... 127

A.3 CmpHSIO_C library description ... 127

A.3.1 Counter_HP ... 127

A.3.2 LatchValue_HP .. 139

A.3.3 PresetValue_HP .. 141

A.3.4 PulsewidthMeasure_HP .. 144

A.3.5 SetCompareInterruptParam_HP .. 147

A.3.6 TimingSampling_HP .. 149

A.3.7 CompareSingleValue_HP .. 150

A.3.8 CompareMoreValue_HP .. 152

A.3.9 GetVersion_HP .. 154

A.3.10 Zphase_Clearpulse_HP... 154

A.3.11 Zphase_Compensate_HP .. 155

Appendix B Project Instance .. 158

B.1 Controller and Goodrive20 Series VFD Configuration Example .. 158

B.2 Controller and DA200 Series Servo Drive Configuration Example .. 164

AX series programmable controller software manual Product Introduction

-1-

 Product Introduction 1

1.1 AX70 series programmable controller

1.1.1 Overview

The AX70 series programmable controller is a high-performance programmable controller designed with a modular

structure to provide users with intelligent automation solutions. It adopts IEC61131-3 programming language system and

supports six standard programming languages: IL, LD, FBD, ST, SFC, and CFC. High-level motion control functions such

as electronic cams, electronic gears, synchronous control, and positioning can be realized through EtherCAT bus.

Supporting 200 kHz high-speed I/O, the programmable controller can realize motion control functions such as linear

interpolation and circular interpolation.

The programmable controller is rack-mounted. Each rack can embrace 16 functional extension modules, including digital

input/output modules, analog input/output modules, temperature modules and communication modules. Remote I/O

extension can be carried on via EtherCAT fieldbus.

In addition, programmable controller supports various communication interfaces such as EtherCAT, CANopen, RS485 and

Ethernet to meet the diverse application requirements of users.

1.1.2 Product configuration and module description

The AX70-C-1608P programmable controller CPU supports the following modules: power supply module, digital input

module, digital output module, analog input module, analog output module, temperature module and communication

module. The diagram of system combination is as follows.

AX series programmable controller software manual Product Introduction

-2-

Power supply

module

CPU

module

Digital output

module Analog

output

module

Temperature

module

Remote

I/O

Digital input module
Analog input

module

EtherCAT communication module

Remote

I/O

Local

I/O

Figure 1-1 System integration

1.1.3 System application process

1
• Install the power supply module, CPU module, and expansion modules.

2
• Provide power and perform wiring for related modules.

3

• Turn on the power only after confirming that the wiring of each module is correct
and the power supply voltage meets the specifications.

4
• Connect the computer that hosts Invtmatic Studio to the CPU module.

5

• Download the program created on Invtmatic Studio and related parameters to the
CPU module.

6

• Ensure that the nixie tube of the CPU module does not show any fault code and the
fault indicators of the CPU module and other modules do not turn on.

AX series programmable controller software manual Product Introduction

-3-

1.2 Programming platform

1.2.1 Invtmatic Studio

Invtmatic Studio is a programming platform developed by Shenzhen INVT Electric Co., Ltd. It fully supports the

IEC61131-3 programming language system and six standard programming languages: IL, LAD, FBD, SFC, ST, and CFC.

1.2.2 Software programming interface

The interface of Invtmatic Studio software after creating an application project is shown as follows.

Figure 1-2 Invtmatic Studio software application engineering interface

1.3 PLCopen specification

Founded in 1992, PLCopen is a vendor- and product-independent worldwide association. One of the core activities of

PLCopen is focused around IEC 61131-3, the only global standard for industrial control programming. A standard

programming interface allows people with different backgrounds and skills to create different elements of a program

during different stages of the software lifecycle: specification, design, implementation, testing, installation and

maintenance. Yet all pieces adhere to a common structure and work together harmoniously. The standard includes the

definition of six programming languages: Continuous Function Chart (CFC), Sequential Function Chart (SFC), Instruction

List (IL), Ladder Diagram (LD), Function Block Diagram (FBD) and Structured Text (ST). Via decomposition into logical

elements, modularization, and modern software techniques, each program is structured, increasing its re-usability. For

programmers, the programming technology based on IEC61131-3 can be widely used in the entire industrial control field.

Invtmatic Studio programming platform used in AX series programmable controller fully supports the PLCopen

specification and allows users to reference many standard function libraries. The high-level language programming

approach makes it easy for controller manufacturers and users to develop their own proprietary function blocks and

instruction libraries and to borrow existing similar control programs to form industry-specific "process packages", which

can significantly improve user programming efficiency.

AX series programmable controller software manual Getting Started

-4-

 Getting Started 2

2.1 Software installation and uninstallation

2.1.1 Software obtaining

INVT AX series programmable controller user programming software contains Invtmatic Studio platform, installation files

and related reference materials. You can get them by the following ways:

 Visit INVT website (www.invt.com) and go to Support > Download > Software to download the software installation

package for free.

 Obtain software installation CDs from all levels of INVISTA distributors.

2.1.2 Software installation requirements

You can install the software on a computer or desk:

 Installed with Windows XP/ Windows 7/ Windows 8/ Windows 10 operation system

 CPU clock speed: 2GHz or higher

 Memory: 2GB or higher

 Available hardware space: 5GB or higher

2.1.3 Preparing

If it is the first time to install Invtmatic Studio, check whether your computer meets the software installation requirements. If

yes, you can install it directly.

If you want to install the latest version of Invtmatic Studio, check the version information about the installed software by

choosing Help > About. If it is not the latest version, you can upgrade the software using the online upgrade method.

Figure 2-1 Version information

2.1.4 Installing the software

1. Locate the installation file storage path, and double-click Invtmatic Studio Setup 64 V1.0.2.exe.

The installation starts. See the following figure.

AX series programmable controller software manual Getting Started

-5-

Figure 2-2 Installation preparation

2. When the dialog box shown in the following figure appears, click Next.

Figure 2-3 Installation wizard

3. Then the license agreement dialog box appears. Select I accept the terms in the license agreement, and then

click Next.

AX series programmable controller software manual Getting Started

-6-

Figure 2-4 License agreement

4. Set the software installation path, and click Next.

Figure 2-5 Installation path

5. The installation component selection interface appears. Select an installation option. If you have no special

requirement, keep the default selection, and click Next.

AX series programmable controller software manual Getting Started

-7-

Figure 2-6 Installation type

6. When the following interface appears, click Install.

Figure 2-7 Start installation

7. An installation progress bar appears. Click Finish when the installation is completed.

AX series programmable controller software manual Getting Started

-8-

Figure 2-8 Installation progress

Figure 2-9 Installation complete

2.1.5 Uninstalling the software

Uninstall Invtmatic Studio by using the standard software uninstallation method of a Windows system. The procedure is as

follows:

1. Shut down Invtmatic Studio running programs, including the backend running program.

2. Enter the control panel, find and right-click Invtmatic Studio, and click Uninstall.

3. Wait until the software is uninstalled.

2.2 AX70 series hardware connection

The hardware connection between an upper computer and programmable controller:

AX series programmable controller software manual Getting Started

-9-

Method A: Using Mini USB cable

Method B: Using LAN network cable

A

B

Figure 2-10 Hardware connection diagram

2.3 PC communication configuration

 If the hardware is connected with a LAN network cable, ensure that the IP address of the PC and the IP address of

the controller are in the same network segment. The factory default IP address of the AX series is 192.168.1.10, so

the IP address of the PC should be set to 192.168.1.xxx. (xxx means any integer value in the range of 1﹣254 except

the end address of the controller IP).

Figure 2-11 PC communication configuration for LAN network cable connection

 If the hardware is connected with Mini USB cables, configure the PC as follows.

When the PC runs Windows7:

 Install USB drive

1) In Computer Management window, select Device Manager, right click the RNDIS/Ethernet Gadget device
and select Update driver.

AX series programmable controller software manual Getting Started

-10-

Figure 2-12 RNDIS/Ethernet Gadget

2) Select Browse my computer for driver software > Let me pick from a list of device drivers on my
computer > Network adapter > Microsoft Corporation > Remote NDIS Compatible Device, and then
click Next.

Figure 2-13 Select driver software

3) After the installation, start the controller and connect it to the PC with a Mini USB cable. The USB driver is
displayed in the computer device manager.

Figure 2-14 Install the driver

 Configure USB IP address

1) Go to Control Panel > Network and Internet, right click Local Area Connection of RNDIS and select
Properties. In the Properties window, select Internet Protocol Version 4 (TCP/IPv4).

AX series programmable controller software manual Getting Started

-11-

Figure 2-15 Select local area connection of RNDIS

2) Configure the IP address on network segment 192.168.2.xxx, in which xxx is within 1-255. Click OK to

complete the IP address configuration.

Figure 2-16 IP address configuration

When the PC runs Windows10:

 Install the driver

kindle_rndis.inf_amd64 is the USB driver file.

1) Right-click the file “5-runasadmin_register-CA-cer.cmd” and select Run as administrator.

AX series programmable controller software manual Getting Started

-12-

2) Press any key.

3) Connect the computer and the PLC with a USB cable and open Device Manager.

AX series programmable controller software manual Getting Started

-13-

4) Right-click the USB serial device under the Ports node and select Update driver.

5) Click Browse my computer for drivers and select the driver folder.

6) Wait for the installation process completed.

The USB RNDIS item has been added to the Network Adapters node in Device Manager.

AX series programmable controller software manual Getting Started

-14-

 Configure USB network port

1) Right-click the Network menu and select Properties.

2) Click Change adapter settings.

3) Right-click the Unidentified network with “USB RNDIS” in its name, and select Properties.

4) Select Internet Protocol Version 4 (TCP/IPv4) and click Configure….

AX series programmable controller software manual Getting Started

-15-

5) Set the IP address manually. The IP address must be in the network segment 192.168.2.x.

2.4 Project creation

2.4.1 Starting the programming environment

1. Double-click the software icon of Invtmatic Studio. The programming environment is as follows:

Figure 2-17 Invtmatic Studio homepage

AX series programmable controller software manual Getting Started

-16-

2. In the tool bar, select Tool > Device repository to add a device profile.

Figure 2-18 Add device profile

3. In the Device repository pop-up window, click Install.

Figure 2-19 Install device

AX series programmable controller software manual Getting Started

-17-

4. From the Install device profile window, select the device profile to be installed from a local folder and then click

Open.

Figure 2-20 Install device profile

Note: All device profiles provided by INVT can be added by following the steps above.

2.4.2 Creating new project

1. Click the project creation icon at the upper left corner or choose File > New Project, or directly click New Project

in the window to quickly create a project. Select the project category, template, save path and file name, as shown in

the following figure.

Figure 2-21 New project

AX series programmable controller software manual Getting Started

-18-

2. Click OK. On the standard project setting interface that appears, select the device type and programming language.

See the following figure.

Figure 2-22 Standard project setting page

3. On the configuration and programming interface, double-click PLC_PRG(PRG) to write programs. See the following

figure.

Figure 2-23 Invtmatic Studio configuration and programming page

2.5 Typical steps of project writing

From the above example, writing a user program with MC motion control functions generally requires the following steps.

1. Application system hardware configuration

Configure network according to the main controller, expansion module, network type, servo slave node and other

hardware used.

2. User program writing

According to the control function to be implemented, write motion control with one POU (such as POU1), and write

common logic control with a POU (such as POU2).

3. Servo driver parameter configuration

Configure the objects of SDO and PDO according to the servo name in the hardware configuration and the operation

mode of the servo. Ensure that the communication objects required between the MC function block of the user

program and the servo are filled in the configuration table.

AX series programmable controller software manual Getting Started

-19-

4. Servo motor parameter configuration

Correctly fill in the resolution of the servo motor encoder, the transmission ratio of the mechanical structure, the

characteristics of the axis movement range and other parameters, so that the displacement command of the control

object corresponds accurately to the actual displacement.

5. Task arrangement

Based on the real-time requirements of control, execute the motion control function POU1 in the EtherCAT task and

set the cycle to 4ms, the priority to 0; execute the common logic control POU2 in common tasks and set the cycle to

20ms, the priority to 16.

6. Online debugging

Connect the AX70 programmable controller to PC via LAN network correctly. Power on the programmable controller,

download and debug the user program, and eliminate user program bugs (if possible, you can connect the servo

drive system to the programmable controller and then debug. If the servo system is not available, you can set the

servo as a virtual axis; if the programmable controller is not available, you can simulate and debug the user program

on the PC to eliminate possible errors in the user program).

2.6 Examples of program writing and debugging

Here is an example of a basic servo control program to give you a first glimpse of the programming process before you go

through the principle of the programming system and the method of compiling the motion control program.

Write a simple program that allows the AX7x CPU programmable controller to implement the following functions:

The servo motor repeats rotating forward 50 revolutions, and then reversing 50 revolutions.

The programming method and steps of the routine are as follows:

1. Add the corresponding equipment: EtherCAT master node, servo drive, motor shaft.

2. Handle the motion control of the servo in the high real-time EtherCAT task cycle.

3. Set relevant parameters.

4. Write program.

2.6.1 Adding devices

1. Add an EtherCAT SoftMotion master node and an EtherCAT network bus.

AX series programmable controller software manual Getting Started

-20-

Figure 2-24 Add EtherCAT master node

2. Add a servo device.

Figure 2-25 Add EtherCAT slave node

3. Add a servo axis.

AX series programmable controller software manual Getting Started

-21-

Figure 2-26 Add a servo axis

2.6.2 Writing a function to handle POU

In Invtmatic Studio programming environment, there is an EtherCAT_Task task and a MainTask task for the default task

configuration. The MainTask task contains a POU named PLC_PRG which is created at the same time as the new project

is created. The servo control program code can be written in the PLC_PRG.

Figure 2-27 PLC_PRG programming page

2.6.3 Setting motor parameters

For precise control of the movement position, the programmable controller must accurately calculate the position of the

servo motor. Based on the operating characteristics and stroke characteristics of the application system, select the Axis

type and limit. Therefore, the programmable controller can calculate the feedback information of the motor encoder to

obtain the accurate position, and then avoid errors caused by the accumulated overflow of the encoder pulse number.

AX series programmable controller software manual Getting Started

-22-

Figure 2-28 Motor parameter settings

For the reciprocating mechanism of the lead screw type, Finite is preferred as the lead screw stroke is limited and we

should know its absolute position within the stroke range.

For a single-direction shaft, Modulo is preferred as the linear mode may cause position counting overflow, resulting in

position calculation errors.

The encoder parameters of the motor (such as resolution) and the mechanical deceleration ratio of the application system

may be different. They need to be set based on the actual situation during programming, as shown in the following figure.

Figure 2-29 Motor encoder parameter settings

The DA200 servo matching motor has two typical resolutions. The resolution of normal incremental encoders is 20bit, that

is, 1048576 pulses per revolution; and the resolution of absolute encoders is 23bit, i.e. 8388608 pulses per revolution. In

actual operation, the programmable controller sends the required number of pulses to the servo drive by EtherCAT

communication to control the servo operation. Therefore, the encoder resolution needs to be accurately set according to

the actual situation, as shown in the figure above. Take a 20bit encoder without a reducer as an example. When the servo

is commanded to run 1 unit, the servo will select 1 revolution (axis moves 360°). If the field unit in application (circled in

red in the figure above) is set to 360, the servo will select 1/360 circle (axis moves 1°) when the servo is commanded to

run 1 unit, and so on. After setting the corresponding parameters (commonly known as electronic gear ratio) according to

AX series programmable controller software manual Getting Started

-23-

the actual mechanical structure, you can input the distance command according to the physical unit of the application

system movement distance, making the control parameters intuitive and easy to understand.

Please note that only integer numbers can be entered in the fields circled in red in the figure above. Because the ratio of

the parameters in the corresponding rows on the left and right sides is effective, you can enter appropriate integer values

in the corresponding rows on the left and right sides. For example, to enable the drive lead with screw rod 6.8mm (that is,

the screw rod rotates 1 circle and the screw slide block moves 6.8mm) to move after the servo motor passes through a

mechanical deceleration mechanism with a ratio of 4:1, please set as shown in the following figure.

Figure 2-30 Setting example

The dimension of the parameters circled in red can be used as the dimension of the distance in the MC control command

later. The settings of the servo driver and motor described above must be set and verified in the corresponding items of

the servo axis, otherwise the motor will not operate as expected.

2.6.4 Writing motor positive and reverse

For the motion control of the servo axis, the default synchronization period is 4ms. Users can choose according to the

actual need, as shown in the following figure.

Figure 2-31 Servo axis motion control cycle setting

The program in the above figure is written in ST language. The relevant code is as follows:

AX series programmable controller software manual Getting Started

-24-

Figure 2-32 ST codes

2.6.5 Compiling user program

If there is a writing error, the error type and reason will be listed in Figure 2-28. Double-click the error description, and the

cursor will jump to the corresponding program editing window to facilitate revision. After the revision, compile again until

all compilation problems are eliminated.

Figure 2-33 Program compilation

Finally, download the user program to the AX7x CPU module.

AX series programmable controller software manual Getting Started

-25-

Figure 2-34 User program download

2.6.6 Running monitor program

After logging in to the device through the button marked in a red square in figure 2-34, the program is running if you can

observe the actual operation of the servo or check the position value of the servo axis of the host computer. At this point,

the required servo jogging and the 2-cycle running triggering functions has been implemented, which shows the

programming process is complete.

AX series programmable controller software manual Network Configuration

-26-

 Network Configuration 3

The network configuration of programmable controllers mainly includes: ModbusTCP, ModbusRTU, EtherCAT, and

CANopen.

3.1 ModbusTCP

3.1.1 ModbusTCP_Master

The number of variables that ModbusTCP can access is defined as follows:

 Read coil (0x01), number of coils 1–2000 (0x7D0)

 Read discrete coils (0x02), number of coils 1–2000 (0x7D0)

 Read holding register (0x03), number of registers 1–125 (0x7D)

 Read input register (0x04), number of registers 1–125 (0x7D)

 Write a single coil (0x05)

 Write a single register (0x06)

 Write multiple coils (0x0F), number of coils 1–1968 (0x7B0)

 Write multiple register (0x10), number of register 1–120 (0x78)

ModbusTCP_Master is an important component of the ModbusTCP_Master function module. Before using the master

node, the corresponding library files must be added as follows:

 Create an application project for the ModbusTCP_Master.

 Add the library file "CmpModbusTCP_Master_1.0.0.0.library" required by this module.

3.1.2 ModbusTCP_Slave

 Create an application project for the ModbusTCP_Slave.

 Add the library file "ModbusTCP_Slave_1.1.0.0.library" required by this module.

The ModbusTCP_Slave defines the storage area that can be accessed from outside. The detailed area is as follows:

Table 3-1 ModbusTCP_Slave function codes

Function code of TCP

master node
Address name Range Offset

01 %QX 0.0-511.7 N/A

05 %QX 0.0-511.7 N/A

02 %IX 0.0-511.7 N/A

04 %IW 0-511 N/A

03/06 %MW 0-8192 5000

03/06 %QW 0-511 N/A

01 %MX 0.0-7565.7 5000

05 %MX 0.0-7565.7 5000

Table 3-1 Example of bit, byte, word, and double word correspondence of AX series controllers

%_X 195.7 – 195.0 194.7 – 194.0 193.7 – 193.0 192.7 – 192.0

%_B
195 (8 most

significant bits)

194 (8 leaset

significant bits)

193 (8 most

significant bits)

192 (8 leaset

significant bits)

%_W 97 (16 most significant bits) 96 (16 leaset significant bits)

%_D 48

AX series programmable controller software manual Network Configuration

-27-

3.2 ModbusRTU

AX70-C-1608P supports two Modbus serial communications, COM1 and COM2, both of which support the standard

ModbusRTU protocol, and can be independently configured as a master or slave, supporting 2400, 4800, 9600, 19200,

38400, 57600, 115200, etc. 7 baud rates.

The number of variables that ModbusRTU can access is defined as follows:

 Read coil (0x01), number of coils 1–2000

 Read discrete coils (0x02), number of coils 1–2000 (0x7D0)

 Read holding register (0x03), number of registers 1–125 (0x7D)

 Read input register (0x04), number of registers 1–125 (0x7D)

 Write a single coil (0x05)

 Write a single register (0x06)

 Write multiple coils (0x0F), number of coils 1–1968 (0x7B0)

 Write multiple register (0x10), number of register 1–120 (0x78)

3.2.1 ModbusRTU_Master

Create an application project for the ModbusRTU_Master. There are two serial ports in AX70. To add ModbusRTU_Master

module, the corresponding library files "ModbusRTU_Master1_1.0.0.0.library" and "ModbusRTU_Master

2_1.0.0.0.library" are needed (ModbusRTU_Master1_1.0.0 .0.library for the hardware COM1 port and

ModbusRTU_Master2_1.0.0.0.library for the hardware COM2 port).

3.2.2 ModbusRTU_Slave

Create an application project for the ModbusRTU_Slave. There are two serial ports in AX70. To add ModbusRTU_Slave

module, the corresponding library files "ModbusRTU_Slave1_1.1.0.0.library" and "ModbusRTU_Slave2_1.1.0.0.library"

are needed (ModbusRTU_Slave1_1.1.0.0.library for the hardware COM1 port and ModbusRTU_Slave2_1.1.0.0.library for

the hardware COM2 port).

The ModbusRTU_Slave defines the storage area that can be accessed from outside. The detailed area is as follows:

Table 3-2 ModbusRTU_Slave function code

Function code of RTU

master node
Address name Range Offset

01 %QX 0.0-511.7 N/A

05 %QX 0.0-511.7 N/A

02 %IX 0.0-511.7 N/A

04 %IW 0-511 N/A

03/06 %MW 0-8192 5000

03/06 %QW 0-511 N/A

01 %MX 0.0-7565.7 5000

05 %MX 0.0-7565.7 5000

3.3 EtherCAT master node

For the parameter configuration of the EtherCAT master node, please refer to the relevant instruction in Invtmatic Studio

help documents. Here is an example of the connection between an EtherCAT master and a DA200 servo drive slave for

reference.

AX series programmable controller software manual Network Configuration

-28-

1) Creating the DA200 servo application project

Add the library file "INVT_DA200_171.devdesc.xml" required for this module.

Note:

1. The highest priority is recommended for the creation of EtherCAT Master SoftMotion projects.

2. It is recommended that the synchronization period and the task period be set consistently at 4ms or more.

3. Create EtherCAT Master SoftMotion through a separate task. Separate the EtherCAT Master SoftMotion tasks from

I/O, analog input/output, Modbus communication and other tasks.

2) Select the motion controller device profile in the device tree, right-click on it and add the EtherCAT Master SoftMotion

as shown in the following figure.

Figure 3-1 Add the EtherCAT motion control master

3) Select EtherCAT_Master_SoftMotion in the device tree, right-click on it and add INVT DA200 servo drive as shown in

the following figure.

Figure 3-2 Add the DA200 servo drive

AX series programmable controller software manual Network Configuration

-29-

4) Select the INVT_DA200_171 in the device tree, right-click on it and add the motor axis (select SoftMotion's CiA 402

axis). Add the call program as shown in the following figure.

Figure 3-3 DA200 servo drive application example

3.4 CANopen

CANopen is a high-level communication protocol that is based on the CAN (Controller Area Network) protocol, including

communication profile and device profile.

The communication model defines four types of messages (communication objects).

Management message

Layer management, network management and ID assignment services: such as initialization, configuration and network

management (including: node protection).

The services and protocols conform to the LMT, NMT and DBT services sections of the CAL. These services are based on

the master-slave communication mode, which means there can only be one LMT, NMT or DBT master node and one or

more slave nodes in a CAN network.

Service Data Object (SDO)

By using indexes and sub-indexes (in the first few bytes of a CAN message), the SDO enables clients to access items

(objects) in the device (server) object dictionary.

SDO is implemented through a multi-domain CMS object in CAL that allows the transfer of data of any length. The data

will be split into several messages when it exceeds 4 bytes.

The protocol confirms the service type: generating an answer for each message (two IDs are required for an SDO). SDO

request and answer messages always contain 8 bytes (meaningless data lengths are indicated in the first byte which

carries the protocol information). SDO communication has many protocols.

Process Data Object (PDO)

PDO is used to transfer real-time data from a creator to one or more recipient s. Data transfer is limited to 1 to 8 bytes (for

example, one PDO can transfer up to 64 digital I/O values, or 4 16-bit AD values).

PDO communication has no protocol defined. PDO data content is defined only by its CAN ID, assuming that the creator

and recipient s know the data content of the PDO.

Each PDO is described by two objects in the object dictionary:

1) PDO communication parameters: determine which COB-ID will be used by the PDO, transmission type, prohibition time,

and timer period.

AX series programmable controller software manual Network Configuration

-30-

2) PDO mapping parameter: a list of objects in the object dictionary that are mapped to the PDO, including their data

lengths (in bits). The creator and recipients must know this mapping to interpret PDO content.

PDO message content is predefined (or configured at network startup).

Mapping application objects to the PDO is described in the device object dictionary. If the device (creator and recipients)

supports variable PDO mappings, the PDO mapping parameters can be configured using SDO messages.

PDO can be delivered in the following modes:

1) Synchronization (by receiving SYNC objects)

Aperiodic: The transmission is pre-triggered by a remote frame or by an object-specific event defined in the device profile.

Periodic: The transmission is triggered after every 1 to 240 SYNC messages.

2) Asynchronization

The transmission is triggered by a remote frame or by an object-specific event defined in the device profile.

Predefined messages or special function objects:

 SYNC

 Time Stamp

 Emergency

 Node guarding

3.4.1 CANopen master node configuration

3.4.1.1 Master node usage process

 Install the CANopen slave devices.

The associated CANopen slave device profile must first be installed into the system. The device profile can be a

*.Devdesc.xml file or an EDS (Electronic Data Sheet) file for the manufacturer.

 Add CANbus to the device tree.

The base node of CANopen (the uppermost entry in the CANbus configuration tree) must be a CANbus object. A CANbus

can be inserted underneath the AX70-C-1608P device node. The device tree structure after adding a CANbus is shown in

the following diagram.

Figure 3-4 Device tree structure with a CANbus

3.4.1.2 Adding CANopen management device

Under the CANbus, add a CANopen Management device, which can be used as a CANopen master. The device tree

structure after adding the device is shown in the following diagram.

AX series programmable controller software manual Network Configuration

-31-

Figure 3-5 Device tree structure with a CANopen master

3.4.1.3 Adding CANopen slave node

Take our TC-TX105 CANopen communication card as an example. Add the slave communication card under CANopen

Manager after adding the EDS file of this communication card, as shown in the following diagram.

Figure 3-6 Device tree structure with a CANopen slave

The software configuration of the CANopen master is complete.

3.4.2 Parameter configuration of CANopen master

Configure Network and Baud Rate of the CANbus first.

Network: the number of CAN networks connected via the CANbus, range: 0–100.

Baud Rate: the baud rate used for transmission on the bus, the following baud rates can be set: 10000, 20000, 50000,

100000, 125000, 2500000, 500000, 800000 and 1000000.

AX series programmable controller software manual Network Configuration

-32-

Figure 3-7 Parameter configuration of CANbus

CANopen Management is a node under the CANbus node that supports CANbus configuration through internal functions.

It is generally used as the CANbus master. The configuration page is shown in the following figure.

Figure 3-8 Parameter configuration of CANopen master

Node ID: Provides an array pair module that CANopen Manager can correspond to one-to-one, with ID values of 1-127

(must be a decimal integer).

Guarding: Heartbeat mode is a traditional protection mechanism that can be handled by the master station and the slave

station modules, different form node protection. Normally the master is configured to send a heartbeat to the slave.

Enable heartbeat producing: If this option is enabled, the master will send heartbeats continuously according to an

internally defined heartbeat time. If a new slave heartbeat function is added, their heartbeat actions will be automatically

activated and configured, i.e. the node ID is automatically set in the management configuration and the heartbeat interval

is automatically multiplied by a factor of 1 and 2. If this option is disabled, the node protection (with a life time factor of 10

and a protection time of 100ms) is activated in the slave.

Node ID: Unique identifier of heartbeat generation (1–127) on the bus.

Producer time (ms): Defines the internal heartbeat time in milliseconds.

AX series programmable controller software manual Module Configuration

-33-

 Module Configuration 4

4.1 CPU module

Please follow the steps to configure the AX70 motion controller real time and IP address.

Step 1 Create a controller Cfg project.

Add the library file CmpPlcCfg_1.0.0.2.library required for this module to create a standard.

Step 2 Define and use variables.

Table 4-1 Variable definition

Variable Type Function Remarks

setEnable

INPUT

BOOL Time setting function
0: Disabled

1: Enabled

getEnable BOOL Time reading function
0: Disabled

1: Enabled

inTime ARRAY OF UINT
Time to be entered in

format: hour minute second
E.g. 14 48 56

inDate ARRAY OF UINT
Date to be entered in

format: year month day
E.g. 2018 12 26

rEnable BOOL IP settings function
0: Disabled

1: Enabled

wEnable BOOL IP reading function
0: Disabled

1: Enabled

new_IP STRING Set a new IP E.g. 192.168.1.16

new_netmask STRING Set a new subnet mask E.g. 255. 255. 255.0

setDone

OUTPUT

BOOL
Completion mark of time

setting

0: The execution of

commands is in progress.

1: The execution of

commands is completed.

getDone BOOL
Completion mark of time

obtaining

0: The execution of

commands is in progress.

1: The execution of

commands is completed.

setError INT Configuration error sign
See Controller Cfg error code

table

getError INT Get error sign
See Controller Cfg error code

table

outTime ARRAY OF UINT

Read the native hour,

minute and second

information.

E.g. 14 48 56

outDate ARRAY OF UINT
Read the native year,

month and day information.
E.g. 2018 12 26

Done BOOL Completion mark

0: The execution of

commands is in progress.

1: The execution of

commands is completed.

read_IP STRING IP read E.g. 192.168.1.16

read_netmask STRING Subnet mask read E.g. 255. 255. 255.0

AX series programmable controller software manual Module Configuration

-34-

Table 4-2 AX70 native time configuration

Variable Function Remarks

setEnable Time setting function
0: Disabled

1: Enabled

getEnable Time reading function
0: Disabled

1: Enabled

inDate
Date to be entered in format:

year month day
E.g. 2018 12 16

inTime
Time to be entered in format:

hour minute second
E.g. 14 48 56

According to the time array in format inTime and inDate, where inTime[0] is hour, inTime[1] is minute, inTime[2] is second,

inDate[0] is year, inDate[1] is month, inDate[2] is day, enter the time (all inputs are required). After the settings, enable

setEnable to set the above time to AX70 current time.

Enable getEnable to get the real time of AX70, which is displayed in outTime and outDate arrays.

Table 4-3 AX70 local IP configuration

Variable Function Remarks

rEnable IP setting function
0: Disabled

1: Enabled

wEnable IP reading function
0: Disabled

1: Enabled

new_IP Set a new IP E.g. 192.168.1.16

new_netmask Set a new subnet mask E.g. 255. 255. 255.0

Enter the IP and subnet mask in the required format, and then enable wEnable to set the above IP or subnet mask to the

current IP or subnet mask of AX70 after entering the setup time.

Note: The USB virtual network port is independent of the EtherNET network port, and the IP or subnet mask modified by

CmpPlcCfg_1.0.0.2.library is still the IP or subnet mask of the EtherNET network port when the device is connected with a

USB. After the IP or subnet mask modification, it will take some time for the AX70 to connect to Invtmatic Studio on the

PC.

Enable rEnable to get the IP address and subnet mask of the controller, which are displayed in the read_IP and

read_netmask strings respectively.

4.2 High speed I/O module

4.2.1 Creating high speed I/O module project

Create the high speed I/O module application and add the corresponding application codes directly. Then add the

corresponding variable mapping in HIGH_PULSE_IO device tree.

HSIO stands for High Speed Input and Output. HSIO can be used for high speed counting and high speed pulse output

with three interrupt functions that can be configured as needed. HSIO contains the device profile Shenzen

INVT-AX70-CPU_1.x.x.x.devdesc, the high speed counting function block library CmpHSIO_C.library and the motion

control function block library CmpHSIO_M.library.

AX series programmable controller software manual Module Configuration

-35-

The HSIO device profile is used to configure various functions of the high-speed IO, including input/output port function,

counter, high-speed pulse output, filter parameters, and interruption.

The high-speed counting function block library CmpHSIO_C.library contains several function blocks, such as counter

setting, count value reading, latching, preset value, pulse width measurement, timing sampling, and count value

comparison. These function blocks can be called to complete the application needed for counting.

The motion control function block library CmpHSIO_M.library is described in detail via dedicated instructions.

At present, AX70&AX71 programmable controller integrates 16-channel 200kHz pulse input and 8-channel 200kHz pulse

output which supports pulse+direction mode, FWD/REV pulse mode and quadrature pulse mode, and each port can be

configured with different functions. The configuration table is shown as follows.

Input

port

Common

input

function

(default)

Counting

function

Trigger

latching

and

Z-signal

function

Positive

and

negative

limit

zero

function

Pulse

width

measure

-ment

function

Output

port

Common

input

function

(default)

High speed pulse

output function

Compare

Output

Function

Function

value is 0

Function

value is 1

Function

value is 2

Function

value is

3

Function

value is 4

Function

value is 1

Function value is

2

Function

value is 3

X0
Common

input
C0A/CW0 CH0N Y0

Common

output
CH0CW/PULS0 CMP0

X1
Common

input
C0B/CWW0 CH1N Y1

Common

output
CH0CCW/SIGN0 CMP1

X2
Common

input
C1A/CW1 CH2N Y2

Common

output
CH1CW/PULS1 CMP2

X3
Common

input
C1B/CWW1 CH3N Y3

Common

output
CH1CCW/SIGN1 CMP3

X4
Common

input
C4A/CW4 C0Z CH0P Y4

Common

output
CH2CW/PULS2 CMP4

X5
Common

input
C4B/CWW4 C1Z CH1P Y5

Common

output
CH2CCW/SIGN2 CMP5

X6
Common

input
C5A/CW5 C2Z CH2P Y6

Common

output
CH3CW/PULS3 CMP6

X7
Common

input
C5B/CWW5 C3Z CH3P Y7

Common

output
CH3CCW/SIGN3 CMP7

X8
Common

input
C2A/CW2 C0T PWC0

X9
Common

input
C2B/CWW2 C1T PWC1

XA
Common

input
C3A/CW3 C2T PWC2

XB
Common

input
C3B/CWW3 C3T PWC3

XC
Common

input
C6A/CW6 CH0Z

XD
Common

input
C6B/CWW6 CH1Z

XE
Common

input
C7A/CW7 CH2Z

XF
Common

input
C7B/CWW7 CH3Z

AX series programmable controller software manual Module Configuration

-36-

Note:

 X0-XF is the input port and Y0-Y7 is the output port.

 Common input and common output mean a common I/O signal, usually a switching signal.

 CxA, CxB, and CxZ are signals of encoder A, B, and Z respectively.

 CW means clockwise, CCW means counterclockwise.

 CxT refers to the trigger and latch function channel and supports 4 channels, C0T–C3T.

 CHxP and CHxN refer to positive and negative limit signals, with N being the negative direction and P being

the positive direction. CHxZ refers to the zero signal.

 PWCx means pulse width check signal.

 CHxCW is a clockwise signal and CHxCCW is a counterclockwise signal.

 PULSx means pulse.

 SIGNx means the direction of the pulse.

 CMPx means the output comparison.

4.2.2 Function description of input port

The input port can be set to five functions, which are: common input function, counting function, triggering latch and

Z-signal function, positive and negative limit zero function, and pulse width measurement function. Here is the mapping

table of configuration input function corresponding to Inx_Configure parameters, where x ranges from 0 to F.

4.2.2.1 Common input function

If the function value is 0, the signal port is configured to be used as a common input port.

Wiring of common input ports

AX series programmable controller software manual Module Configuration

-37-

Configuration of common input ports

Define the variables to configure the ports and map them to the high speed pulse mapping table.

Configuration routine:

1: Configure X0 as a common input port.

in0:=0;

2: Configure X1 as a common input port.

in1:=0;

4.2.2.2 Counting function

If the function value is 1, the signal port is configured as a counter function and all 16 input ports can be used as counter

inputs.

Counting function module can count and calculate the input pulse, and detect the position, speed and frequency. The

maximum frequency of input pulse is 200kHz.

AX series programmable controller software manual Module Configuration

-38-

Wiring of counting function ports

AX series programmable controller software manual Module Configuration

-39-

Configuration of counting ports

Function value configuration:

Define the variables to configure the ports with data type BYTE, and map them to the high-speed pulse mapping table.

Configuration routine:

1) Configure X0 as a counting port.

in0:=1;

2) Configure X1 as a counting port.

in1:=1;

Configure other ports by analogy.

4.2.2.3 Trigger, latch and Z-signal function

If the function value is 2, the signal port is configured as trigger, latch and Z-signal functions.

The trigger function can preset count value for the counter and the rising edge of the trigger signal is valid. The preset

value will be written to the counter once the signal is valid. Normally there are three ways to write the preset value of the

counter: software writing, external trigger writing, and consistent comparison trigger writing. This product uses external

trigger writing.

The latch function can lock the counter value instantly for the upper computer to read.

The trigger and latch functions support 4 channels, C0T–C3T (mapping ports X8, X9, XA, XB).

Z-signal function is used for Z clearing and Z compensation functions and Z-signal encoders generate one pulse per

revolution.

Z-signal function supports 4 channels, C0T–C3T (mapping ports X4, X5, X6, X7)

AX series programmable controller software manual Module Configuration

-40-

Wiring of trigger, latch and Z-signal ports

Configuration of the trigger, latch and Z-signal ports

Function value configuration: Define the variables to configure the ports with data type BYTE, and map them to the

high-speed pulse mapping table.

Configuration routine:

1) Configure X8 as a trigger and latch port.

in8:=2;

2) Configure X4 as a Z-signal port

in4:=2;

4.2.2.4 Positive and negative limit zero function

If the function value is 3, the signal port is configured as positive and negative limit zero function.

Only ports X0–X7 can be used as CHxP/CHxN positive and negative limit signal functions on the x channel, where x

ranges from 0 to 3. The positive limit serves to limit the positive direction, where motor movement needs to stop or reverse.

The negative limit serves to limit the negative direction, where motor movement needs to stop or reverse.

Only ports XC–XF can be used as CHyZ zero signal functions on the y channel, where y ranges from 0 to 3.

AX series programmable controller software manual Module Configuration

-41-

Wiring of positive and negative limit zero ports

Configuration of positive and negative limit zero ports

Function value configuration:

Define the variables to configure the ports, and map them to the high-speed pulse mapping table.

Configuration routine:

1. Configure X3 as a positive and negative limit port.

in3:=3;

2. Configure XC as a zero port.

inC:=3;

4.2.2.5 Pulse width measurement function

If the function value is 4, the signal port is configured as a pulse width measurement function.

PWCx is a pulse width measurement input channel x, where x ranges from 0 to 3, corresponding to ports X8, X9, XA, XB.

AX series programmable controller software manual Module Configuration

-42-

Wiring of pulse measurement ports

Configuration of pulse width measurement ports

Function value configuration:

Define the variables to configure the ports, and map them to the high-speed pulse mapping table.

Configuration routine:

1. Configure X8 as a pulse width measurement port

in8:=4;

2. Configure X9 as a pulse width measurement port.

in9:=4;

4.2.3 Output Port Function Description

The output port can be set for 3 functions: common output function, high-speed pulse output function and output

comparison function.

4.2.3.1 Common output function

If the function value is 0, the signal port is configured to be used as a common output port. The following are the

parameters of Outx_Configure in the mapping table of the configuration output function, where the range of x is 0–7.

AX series programmable controller software manual Module Configuration

-43-

Wiring of common output ports

The output port contains 8 output signals. Only single-ended outputs are supported, and the signal type is source type

output. Y0, Y2, Y4, and Y6 share the common COM1, and Y1, Y3, Y5, and Y7 share the common COM2.

Configuration of common output ports

Function value configuration:

Define the variables to configure the ports and map them to the high speed pulse mapping table.

Configuration routine:

1. Configure Y0 as a common output port.

out0:=0;

2. Configure Y1 as a common output port.

out1:=0;

4.2.3.2 High speed pulse output function

If the function value is 1, the signal port is configured as a high-speed pulse output function, and all 8 output ports can be

configured for high-speed pulse output.

The high-speed pulse output support pulse + direction, FWD/REV pulse, and quadrature pulse modes.

Wiring of high-speed pulse output ports

AX series programmable controller software manual Module Configuration

-44-

Configuration of high-speed pulse output ports

Function value configuration:

Define the variables to configure the ports, and map them to the high-speed pulse mapping table.

Configuration routine:

1. Configure Y0 as a high-speed pulse output port.

out0:=1;

2. Configure Y1 as a high-speed pulse output port.

out1:=1;

4.2.3.3 Output comparison function

If the function value is 2, the signal port is configured as an output comparison function with 8 channels.

The output comparison outputs the result of the counter single value comparison, and each counter channel has an output

comparison function. If the counter value is equal to the set comparison value, it will output high, and if it is not equal, it will

output low.

Wiring of output comparison ports

Configuration of output comparison ports

Function value configuration:

Define the variables to configure the ports, and map them to the high-speed pulse mapping table.

Configuration routine:

1. Configure Y0 as a comparison output port.

out0:=2;

2. Configure Y1 as a comparison output port.

out1:=2;

AX series programmable controller software manual Module Configuration

-45-

4.2.4 High-speed I/O mapping table

The device profile Shenzen INVT-AX70-CPU_1.x.x.x.devdes is a CPU device profile that contains description of the high

speed counting function, which is used for functional configuration of the input and output ports as well as the use and

configuration of the interrupt function. See the following table.

Serial

No.
Variable

Input/out

put type
Data type Meaning

1 Gpi_Value IN Word 16-Channel general input feedback

2 Version_FPGA IN BYTE

FPGA version number.

bit6–bit7: major version.

bit3–bit5: minor version.

bit0-bit2: revision number.

3 In0_Configure IN BYTE

Input terminal function configuration

0: Standard input function

1: Counting function

2: Trigger, latch and zero-signal function

3: Positive and negative limit zero

function

4: Pulse width measurement function

4 In1_Configure IN BYTE

5 In2_Configure IN BYTE

6 In3_Configure IN BYTE

7 In4_Configure IN BYTE

8 In5_Configure IN BYTE

9 In6_Configure IN BYTE

10 In7_Configure IN BYTE

11 In8_Configure IN BYTE

12 In9_Configure IN BYTE

13 InA_Configure IN BYTE

14 InB_Configure IN BYTE

15 InC_Configure IN BYTE

16 InD_Configure IN BYTE

17 InE_Configure IN BYTE

18 InF_Configure IN BYTE

19 XMode_SetA OUT BYTE

Counting function configuration for

channel 0 (bit0-bit3), channel 1(bit4-bit7):

0: Single pulse

1: Quadrature encoder pulses (QEP)

2: Timing

3: SIGN+PULS

20 XMode_SetB OUT BYTE

Counting function configuration for

channel 2 (bit0-bit3), channel 3(bit4-bit7)

0: Single pulse

1: Quadrature encoder pulses (QEP)

2: Timing

3: SIGN+PULS

21 XMode_SetC OUT BYTE

Counting function configuration for

channel 4 (bit0-bit3), channel 5(bit4-bit7)

0: Single pulse

1: Quadrature encoder pulses (QEP)

2: Timing

3: SIGN+PULS

AX series programmable controller software manual Module Configuration

-46-

Serial

No.
Variable

Input/out

put type
Data type Meaning

22 XMode_SetD OUT BYTE

Counting function configuration for

channel 6 (bit0-bit3), channel 7(bit4-bit7)

0: Single pulse

1: Quadrature encoder pulses (QEP)

2: Timing

3: SIGN+PULS

23 Filt_Set OUT BYTE
Input signal filter parameter setting (unit:

0.25us)

24 Out0_Configure OUT BYTE

Output terminal function configuration

0: Common output function

1: High-speed pulse output function

2: Comparison output function

3–255: Reserved

25 Out1_Configure OUT BYTE

26 Out2_Configure OUT BYTE

27 Out3_Configure OUT BYTE

28 Out4_Configure OUT BYTE

29 Out5_Configure OUT BYTE

30 Out6_Configure OUT BYTE

31 Out7_Configure OUT BYTE

32 GPO_Set OUT BYTE Common output signal setting bit0-bit7

33 Run_Enable OUT BYTE

bit0: Output channel 0 (1: enabled, 0:

disabled)

bit1: Output channel 1 (1: enabled, 0:

disabled)

bit2: Output channel 2 (1: enabled, 0:

disabled)

bit3: Output channel 3 (1: enabled, 0:

disabled)

bit6–bit7: Reserved.

34 Interrupt OUT BOOL Global interrupt enable

35 Interrupt_Enable OUT DWORD

Interrupt enable

bit0: Interrupt 0 enable

bit1: Interrupt 1 enable

…

bit19: Interrupt 19 enable

36 Interrupt_Mode OUT DWORD

Interrupt mode

bit0-bit1: X0 interrupt mode

bit2-bit3: X1 interrupt mode

bit4-bit5: X2 interrupt mode

bit6-bit7: X3 interrupt mode

bit8-bit9: X4 interrupt mode

bit10-bit11: X5 interrupt mode

bit12-bit13: X6 interrupt mode

bit14-bit15: X7 interrupt mode

bit16-bit17: Probe 0 interrupt mode

bit18-bit19: Probe 1 interrupt mode

bit20- bit21: Probe 2 interrupt mode

bit22-bit23: Probe 3 interrupt mode

0: rise edge

1: fall edge

2: Two edges

AX series programmable controller software manual Module Configuration

-47-

The operation interface of Invtmatic Studio is displayed as follows:

4.2.4.1 General input value

The variable corresponding to the device profile is Gpi_Value with the data type of WORD. This parameter is used when

the input signal is set to the common input function. The input signals corresponding to the bits of the variable Gpi_Value

are shown in the following table.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XF XE XD XC XB XA X9 X8 X7 X6 X5 X4 X3 X2 X1 X0

If you need to read a common input signal, you can use either WORD mapping or bit mapping.

In WORD variable mapping mode, 16 input signal values can be read at the same time.

In Bit mapping mode, one variable can only read one signal value, and the variable type is BOOL.

4.2.4.2 Version

The variable corresponding to the device profile is Version_FPGA with data type BYTE. It is used to read the FPGA

version, where bit6–bit7: major version, bit3–bit5: minor version, bit0-bit2: revision number.

4.2.4.3 Input terminal function configuration

Configure the function of the input port with data type BYTE. There are 16 input ports that can be configured for 5

functions. Including standard input function, counting function, triggering, latching, and Z-signal function, positive and

negative limit zero function, and pulse width measurement function.

AX series programmable controller software manual Module Configuration

-48-

4.2.4.4 Counting mode configuration

There are 4 variables to configure the counting mode with the data type BYTE. Each variable can be configured for the

counting mode of 2 channels. A total of 8 counter modes can be configured. See the following figure.

Use 4 bits to set the counter mode with the following values:

Bit Counting mode

0 Single pulse

1 Quadrature encoder pulses

2 Timing counting

3 Pulse + direction

Configure the bits of XMode_SetA to set the mode of different counters.

Configure the bits of XMode_SetB to set the mode of different counters.

Configure the bits of XMode_SetC to set the mode of different counters.

Configure the bits of XMode_SetD to set the mode of different counters.

7 6 5 4 3 2 1 0

Counter 1 Counter 0

7 6 5 4 3 2 1 0

Counter 3 Counter 2

7 6 5 4 3 2 1 0

Counter 5 Counter 4

7 6 5 4 3 2 1 0

Counter 7 Counter 6

AX series programmable controller software manual Module Configuration

-49-

4.2.4.5 Filter parameters

The variable of the corresponding device profile is Filt_Set in 0.25us, which sets the filter parameters of input and output

signals, with the data type BYTE and the maximum filter width 64us. Adjust this parameter to improve the anti-interfere of

the signal.

If the signal interference is strong, set the parameter value larger. If the interference is weak, set it smaller. The filter

parameters are usually set to 1/4–1/3 (no more than 1/2) of the reference width which is the smaller one of the high pulse

and low pulse width. The upper limit is 64us. A parameter value that is too large will filter out the effective pulses, while a

value that is too small may not filter out the clutter effectively.

4.2.4.6 Output terminal function configuration

Configure the function of the output port with data type BYTE. There are 8 output ports that can be configured for 3

functions. For details, see the output port function description.

4.2.4.7 Common output value

Common means the common function output. The variable corresponding to the device profile is GPO_Set with the data

type of BYTE. This parameter is used when the output signal is set to the standard output function. The output signals

corresponding to the bits of the variable GPO_Set are shown in the following table.

7 6 5 4 3 2 1 0

Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0

If you need to set a common output signal, you can use either BYTE mapping or bit mapping.

In BYTE variable mapping mode, 8 output signal values can be set at the same time.

In Bit mapping mode, one variable can only set one signal value, and the variable type is BOOL.

4.2.4.8 High-speed pulse output function

The variable corresponding to the device profile is Run_Enable with the data type of BYTE. This parameter is used for

channel enable at high speed pulse output. The bits of the variable Run_Enable corresponds to the channel enable, 1

indicates enabled, 0 indicates disabled. The following table shows the correspondence between channels and bits.

7 6 5 4 3 2 1 0

Reserved Channel 3 Channel 2 Channel 1 Channel 0

AX series programmable controller software manual Module Configuration

-50-

4.2.4.9 Global interrupt enable

The variable corresponding to the device profile is Interrupt, which is the master switch that enables all interrupts, with the

data type of BOOL. 1 indicates total interrupt enabled and 0 indicates disabled.

Serial No. Variable Input/output type Data type Meaning

35 Interrupt OUT BOOL Global interrupt enable

4.2.4.10 Interrupt enable

The variable corresponding to the device profile is Interrupt_Enable with the data type of DWORD. HSIO supports 20

types of interrupts, including 8 external input interrupts, 8 count-comparison interrupts, and 4 probe interrupts, each of

which can be enabled with the bit of Interrupt_Enable. The mapping is shown in the following table.

19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Probe interrupt

enable
Comparison interrupt enable External interrupt enable

Bit0–bit7 corresponds to external interrupt 0–7 respectively.

Bit8–bit15 corresponds to comparison interrupt 0–7 respectively.

Bit16–bit19 corresponds to probe interrupt 0–3 respectively.

4.2.4.11 Interrupt mode

The variable corresponding to the device profile is Interrupt_Mode with the data type of DWORD. Only external interrupts

and probe interrupts require an interrupt mode. Each mode consists of 2 bits. The mapping of interrupt modes and bits is

shown in the following table.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

External

interrupt 7

External

interrupt 6

External

interrupt 5

External

interrupt 4

External

interrupt 3

External

interrupt 2

External

interrupt 1

External

interrupt 0

23 22 21 20 19 18 17 16

Probe interrupt 3 Probe interrupt 2 Probe interrupt 1 Probe interrupt 0

Use 2 bits to set the interrupt mode with the following values:

Motion mode configuration Motion mode

0 Rising edge

1 Falling edge

2 Two edges

4.2.5 Interrupt instruction

The HSIO supports 20 types of interrupts, including 8 external input interrupts, 8 count-comparison interrupts and 4 probe

interrupts. To use the interrupt function, configure the corresponding IO port function. Then, enable the global interrupt

and the required interrupt bits. If an external input interrupt or probe interrupt is used, the interrupt mode must also be set.

4.2.5.1 External interrupt instruction

The corresponding input port numbers for external interrupts are X0–X7. Configure these ports as common input ports,

set an interrupt mode to enable interrupts, and configure the interrupt task so that the operations can be performed in the

interrupt task.

External interrupt configuration

Follow the steps to implement the interrupt function:

AX series programmable controller software manual Module Configuration

-51-

1: Set the input terminal as standard input function

For details, see Input terminal function description.

2: Set global interrupt

Set Interrupt to true. See Global interrupt enable in the device profile parameter description.

Serial

No.
Variable

Input/output

type
Data type Meaning

35 Interrupt OUT BOOL Global interrupt enable

3: Set input port interrupt

Set the 8 input port bits of the Interrupt_Enable the device profile, with Gpix of input port x set to true. Set a bit to enable

the interrupt function mapping to that bit.

4: Set interrupt mode

The interrupt mode setting consists of 2 bits, and different interrupts correspond to different bits. For details, see

Interrupt mode in the device profile parameter description.

5: Select interrupt task

In the Invtmatic Studio task, set the type to External, and select the event inxInterrupt of the input port X0–X7, where x

ranges from 0 to 7.

An external signal generates an interrupt based on the interrupt mode and calls the corresponding task execution.

AX series programmable controller software manual Module Configuration

-52-

External interrupt timing

GPIx Interrupt

falling edge

valid Interrupt

rising edge

validInterrupt[]

Upper computer

interrupt processing

Upper computer

interrupt processing

Interrupt_clean[]

Figure 4-1 External input interrupt timing

GPIx represents the xth external general input channel where 0 =< x <= 7, and Interrupt[] is the interrupt state output of

GPIx. The high-level pulse output by Interrupt[] uses a dotted line to indicate that interrupts can be output only if the

interrupt mode is valid and the interrupt enable is valid. The upper computer interrupt process and the interrupt_clean[]

signal only appear after the output of the Interrupt[], so they are also presented as dotted lines. Interrupt_clean[] is the

clear signal given by the upper computer in response to the Interrupt[], which clears the Interrupt[] to zero.

4.2.5.2 Probe interrupt instruction

The corresponding input port numbers for probe interrupts are X8–XB (i.e. CxT, 0 =< x <= 3). The input port signal function

should be configured as a latching function.

Probe interrupt wiring

Probe interrupt configuration

Follow the steps to implement the interrupt function:

1: Set the input terminal as latching function.

For details, see Input terminal function description.

2: Set global interrupt.

Set Interrupt to true, see Global interrupt enable in the device profile parameter description.

Serial No. Variable Input/output type Data type Meaning

35 Interrupt OUT BOOL Global interrupt enable

3: Set input port interrupt.

Set the 4 input port bits of the Interrupt_Enable the device profile, with Trigx of input port x set to true. Set a bit to enable

the interrupt function mapping to that bit.

AX series programmable controller software manual Module Configuration

-53-

4: Set interrupt mode.

The interrupt mode setting consists of 2 bits, and different interrupts correspond to different bits. For details, see Interrupt

mode in the device profile parameter description.

5: Select interrupt task.

In the Invtmatic Studio task, set the type to External, and select the event prbxInterrupt of the input port X8–XB, where x

ranges from 0 to 3. Read the probe latching value in the LatchValue_HP function block via the interrupt task flag.

An external signal generates an interrupt based on the interrupt mode and calls the corresponding task execution.

Probe interrupt timing

CxT Interrupt

falling edge

valid Interrupt

rising edge

vaildInterrupt[]

Upper computer

interrupt processing

Upper computer

interrupt processing

Interrupt_clean[]

Figure 4-2 Probe input interrupt timing

CxT represents the xth probe input channel where 0 =< x <= 3, and Interrupt[] is the interrupt state output of CxT. The

high-level pulse output by Interrupt[] uses a dotted line to indicate that interrupts can be output only if the interrupt mode is

valid and the interrupt enable is valid. The upper computer interrupt process and the interrupt_clean[] signal only appear

after the output of the Interrupt[], so they are also presented as dotted lines. Interrupt_clean[] is the clear signal given by

the upper computer in response to the Interrupt[], which clears the Interrupt[] to zero.

AX series programmable controller software manual Module Configuration

-54-

4.2.5.3 Comparison interrupt instruction

Comparison interrupt includes single-value comparison interrupt and multi-value comparison interrupt. Single-value

comparison interrupt is generated by calling the function block CompareSingleValue_HP, and multi-value comparison

interrupt is generated by calling CompareMoreValue_HP. The following steps describe the generation of single-value

interrupt and multi-value interrupt respectively.

Comparison interrupt configuration

 Single-value comparison interrupt:

1: Set the input terminal as counting function.

For details, see Input terminal function description.

2: Set global interrupt.

Set Interrupt to true, see Global interrupt enable in the device profile parameter description.

Serial No. Variable Input/output type Data type Meaning

35 Interrupt OUT BOOL Global interrupt enable

3: Set input port interrupt.

Set the 8 input port bits of the Interrupt_Enable the device profile, with Compx of input port x set to true. Set a bit to

enable the interrupt function mapping to that bit.

4: Set the comparison interrupt output.

If comparison interrupt output is not needed, skip this step.

Select the port to be output, set the corresponding port in the device profile as the comparison output function, and

select any one of the following 8 channels through the single-value comparison function block

CompareSingleValue_HP parameter OutChannel. The OutChanne value ranges from 0 to 7. One output channel

OutChannel value can only correspond to one CMP channel.

Output terminal
Standard

output function
High-speed pulse output function

Comparison

output function

Y0
General

Common 0
CH0CW/PULS0 CMP0

Y1 Common 1 CH0CCW/SIGN0 CMP1

Y2 Common 2 CH1CW/PULS1 CMP2

Y3 Common 3 CH1CCW/SIGN1 CMP3

Y4 Common 4 CH2CW/PULS2 CMP4

Y5 Common 5 CH2CCW/SIGN2 CMP5

AX series programmable controller software manual Module Configuration

-55-

Output terminal
Standard

output function
High-speed pulse output function

Comparison

output function

Y6 Common 6 CH3CW/PULS3 CMP6

Y7 Common 7 CH3CCW/SIGN3 CMP7

5: Select interrupt task.

In the Invtmatic Studio task, set the type to External, and select cmpxInterrupt, where x ranges from 0 to 7.

If the comparison value is equal, an interrupt is generated and the corresponding task execution is called. The

channel x corresponds to the cmpxInterrupt comparison interrupt task and cannot be modified at will.

6: Call function block to generate interrupt

Single-value comparison calls the function block CompareSingleValue_HP to generate an interrupt. Setting the

comparison value to be the same as the count value can also generate an interrupt output.

 Multi-value comparison interrupt:

1: Set the input terminal as counting function

For details, see Input terminal function description.

2: Set global interrupt

Set Interrupt to true, see Global interrupt enable in the device profile parameter description.

Serial No. Variable Input/output type Data type Meaning

35 Interrupt OUT BOOL Global interrupt enable

3: Set input port interrupt

Set the 8 port bits of the Interrupt_Enable the device profile, with Compx of port x set to true. Since a multi-value

comparison function block can be used to generate multiple interrupts, the first value is the enable bit of Cmp0

interrupt, the second value is the enable bit of Cmp1 interrupt, and so on, and the eighth value is the enable bit of

Cmp7 interrupt. It cannot be modified arbitrarily.

AX series programmable controller software manual Module Configuration

-56-

4: Select interrupt task

In the Invtmatic Studio task, set the type to External, and select cmpxInterrupt, where x ranges from 0 to 7.

The multi-value comparison function block has multiple comparison values, each of which corresponds to an

interrupt enabled bit of Compx. It shares a one-to-one mapping with the interrupt task cmpxInterrupt where x ranges

from 0 to 7 and cannot be modified at will.

5: Call function block to generate interrupt

Multi-value comparison calls the function block CompareMoreValue_HP to generate an interrupt. Setting the

comparison value to be the same as the count value will generate an interrupt output. For now, only eight

comparison values are supported for multi-value comparisons to generate interrupts, that is, the first eight values of

a multi-value comparison can generate interrupts.

AX series programmable controller software manual Module Configuration

-57-

Comparison interrupt timing

 Single-value comparison interrupt

Interrupt[]

Upper computer

interrupt processing

Upper computer

interrupt processing

Interrupt_clean[]

Cnt[x]CvEqPv

Interrupt

enabling

valid

Interrupt

enabling

valid

Figure 4-3 Single-value comparison interrupt timing

Cnt[x]CvEqPv represents the single-value comparison signal of the xth counting channel, in which 0 =< x <= 7. A high

pulse indicates that cv and pv are equal. Interrupt[] is the interrupt state output corresponding to Cnt[x]CvEqPv. The

high-level pulse output by Interrupt[] uses a dotted line to indicate that interrupts can be output if the interrupt enable is

valid. The upper computer interrupt process and the interrupt_clean[] signal only appear after the output of the Interrupt[],

so they are also presented as dotted lines. Interrupt_clean[] is the clear signal given by the upper computer in response to

the Interrupt[], which clears the Interrupt[] to zero.

 Multi-value comparison interrupt

Interrupt[]

Upper computer

interrupt processing

Upper computer

interrupt processing

Interrupt_clean[]

Cnt[x]CvEqPv[y]

Interrupt

enabling

valid

Interrupt

enabling

valid

Figure 4-4 Multi-value comparison interrupt timing

Cnt[x]CvEqPv[y] represents the yth comparison value signal of the xth counting channel, in which 0 =< x <= 7 and 0 =< y

<= 7. A high pulse indicates that cv and pv are equal. Interrupt[] is the interrupt state output corresponding to

Cnt[x]CvEqPv[y]. The high-level pulse output by Interrupt[] uses a dotted line to indicate that interrupts can be output if the

interrupt enable is valid. The upper computer interrupt process and the interrupt_clean[] signal only appear after the

output of the Interrupt[], so they are also presented as dotted lines. Interrupt_clean[] is the clear signal given by the upper

computer in response to the Interrupt[], which clears the Interrupt[] to zero.

In the single-value comparison interrupt, each counting channel has only one interrupt signal output, and all counting

channels (0-7) can output single-value comparison interrupt signals. In the multi-value comparison interrupts, only

counting channels 0-3 can output multi-value interrupts, and each counter can output 8 (0-7) interrupt signals. When a

multi-value counting channel is selected, its yth comparison value corresponds to the interrupt signal one by one. Only

one counting channel is valid at a time for the multi-value comparison interrupt.

4.3 Digital input/output module

4.3.1 Creating a project for digital input/output module

1. Create a digital I/O application.

2. Add the library files IoDrvDI16_1.1.0.0.devdesc.xml and IoDrvDO16_1.1.0.0.devdesc.xml required by the module.

AX series programmable controller software manual Module Configuration

-58-

4.3.2 Variable definition and use

Figure 4-5 Variable mapping of input module

Figure 4-6 Variable mapping of output module

4.4 Analog input/output module

4.4.1 Creating a project for analog input/output module

1. Create an analog I/O application project.

2. Add the library files IoDrv4AD_1.1.0.0.devdesc.xml and IoDrv4DA_1.1.0.0.devdesc.xml required by the module.

AX series programmable controller software manual Module Configuration

-59-

4.4.2 Variable definition and use

Figure 4-7 Variable mapping of analog input module

Figure 4-8 Variable mapping of analog output module

4.5 Temperature module

4.5.1 Creating a project for temperature module

1. Create a temperature module application.

2. Add the library file IoDrvTemperature_1.1.0.0.devdesc.xml required by the module.

AX series programmable controller software manual Module Configuration

-60-

4.5.2 Variable definition and use

Figure 4-9 Variable mapping of temperature module

4.5.3 Temperature module

EtherCAT remote extension module (AX-EM-Rcm-ET) is used to extend the temperature module (AX-EM-4PTC) through

the back plate. The instructions are as follows:

1. Right click AX-EM-ECM-ET in the device panel to add the temperature module (AX_EM_4PTC). Control the module

through the multiple sets of variables in the Module/IO mapping tab, as shown in the following figure.

AX series programmable controller software manual Module Configuration

-61-

Figure 4-10 Variable mapping of temperature module

2. After compiling, log in to download the project and run it.

3. Variable description: the following tables describe the use of all variables for the four channels.

Table 4-4 Variable description

Parameters Value Valid bit Variable name

Temperature of channel 0 [15:0] Temperature0

Temperature of channel 1 [15:0] Temperature1

Temperature of channel 2 [15:0] Temperature2

Temperature of channel 3 [15:0] Temperature3

Disconnection detection

result of channel 0

Normal 00
[1:0]

Breakup

Disconnected 01

Disconnection detection

result of channel 1

Normal 00
[3:2]

Disconnected 01

Disconnection detection

result of channel 2

Normal 00
[9:8]

Disconnected 01

Disconnection detection

result of channel 3

Normal 00
[11:10]

Disconnected 01

Enable channel 0
Enable 1

[0]

Config_Word0

Disable 0

Display mode
°C 0

[1]
°F 1

Cold junction

compensation method

Internal cold junction

compensation
0

[2]
External cold junction

compensation
1

Sensor disconnection

detection

Enable 1
[3]

Disable 0

Over-limit detection
Enable 1

[4]
Disable 0

Sensor type

B

E

J

000

001

010

[11:8]

AX series programmable controller software manual Module Configuration

-62-

Parameters Value Valid bit Variable name

K

N

R

S

T

PT100

PT500

PT1000

CU500

011

100

101

110

111

1000

1001

1010

1011

2-Wire

3-Wire

4-Wire

(For RTD only)

00

01

10

[13:12]

Filter time 0–100 0–100 [6:0]

Config_Word1

Enable channel 1
Enable 1

[8]
Disable 0

Display mode
°C 0

[9]
°F 1

Cold junction

compensation method

Internal cold junction

compensation
0

[10]
External cold junction

compensation
1

Sensor disconnection

detection

Enable 1
[11]

Disable 0

Over-limit detection
Enable 1

[12]
Disable 0

Sensor type

B

E

J

K

N

R

S

T

PT100

PT500

PT1000

CU500

000

001

010

011

100

101

110

111

1000

1001

1010

1011

[3:0]

Config_Word2

2-Wire

3-Wire

4-Wire

(For RTD only)

00

01

10

[5:4]

Filter time 0–100 0–100 [14:8]

Enable channel 2
Enable 1

[0]

Config_Word3

Disable 0

Display mode
°C 0

[1]
°F 1

Cold junction

compensation method

Internal cold junction

compensation
0

[2]
External cold junction

compensation
1

AX series programmable controller software manual Module Configuration

-63-

Parameters Value Valid bit Variable name

Sensor disconnection

detection

Enable 1
[3]

Disable 0

Over-limit detection
Enable 1

[4]
Disable 0

Sensor type

B

E

J

K

N

R

S

T

PT100

PT500

PT1000

CU500

000

001

010

011

100

101

110

111

1000

1001

1010

1011

[11:8]

2-Wire

3-Wire

4-Wire

(For RTD only)

00

01

10

[13:12]

Filter time 0–100 0–100 [6:0]

Config_Word4

Enable channel 3
Enable 1

[8]
Disable 0

Display mode
°C 0

[9]
°F 1

Cold junction

compensation method

Internal cold junction

compensation
0

[10]
External cold junction

compensation
1

Sensor disconnection

detection

Enable 1
[11]

Disable 0

Over-limit detection
Enable 1

[12]
Disable 0

Sensor type

B

E

J

K

N

R

S

T

PT100

PT500

PT1000

CU500

000

001

010

011

100

101

110

111

1000

1001

1010

1011

[3:0]

Config_Word5

2-Wire

3-Wire

4-Wire

(For RTD only)

00

01

10

[5:4]

Filter time 0–100 0–100 [14:8]

AX series programmable controller software manual Module Configuration

-64-

Parameters Value Valid bit Variable name

Sampling period of

channel 0

250ms

500ms

1000ms

01

10

11

[1:0]

Config_Word6

Sampling period of

channel 1

250ms

500ms

1000ms

01

10

11

[3:2]

Sampling period of

channel 2

250ms

500ms

1000ms

01

10

11

[5:4]

Sampling period of

channel 3

250ms

500ms

1000ms

01

10

11

[7:6]

Table 4-5 Supported sensor types and measurement range

Item Sensor name
Temperature range in

Celsius

Temperature range in

Fahrenheit

Thermal resistor type

PT100 -200.0°C–850°C -328.0°F–1562.0°F

PT500 -200.0°C–850°C -328.0°F–1562.0°F

PT1000 -200.0°C–850°C -328.0°F–1562.0°F

CU100 -50.0°C–150°C -58.0°F–302.0°F

Thermocouples type

B 200.0°C–1800°C 392.0°F–3272.0°F

E -270.0°C–1000°C -454.0°F–1832.0°F

N -200.0°C–1300°C -328.0°F–2372.0°F

J -210.0°C–1200°C -346.0°F–2192.0°F

K -270.0°C–1370°C -454.0°F–2498.0°F

R -50.0°C–1765°C -58.0°F–3209.0°F

S -50.0–1765 -58.0°F–3209.0°F

T -270.0°C–400°C -454.0°F–752.0°F

4.6 Communication module

The EtherCAT communication module is used as an EtherCAT slave. Before using the module, add the device profile

INVT_ECAT_SLAVE_FOR_Invtmatic Studio_V1.07.xml. For detailed instructions, refer to the case of adding DA200

servo drive to the EtherCAT master node.

1. Create a new project in the Invtmatic Studio upper computer, Right click Device to add a device, and add an

EtherCAT Master SoftMotion module, as shown in the following figure:

AX series programmable controller software manual Module Configuration

-65-

Figure 4-11 Add an EtherCAT Master SoftMotion module

2. Right click the EtherCAT Master SoftMotion module to add a device, and add the EtherCAT Slave Module

(AX-EM-RCM-ET), as shown in the following figure:

Figure 4-12 Add a EtherCAT remote expansion module

The following section explains how to use the EtherCAT remote expansion module to extend our existing IO.

AX series programmable controller software manual Module Configuration

-66-

4.6.1 Digital input module

EtherCAT remote extension module (AX-EM-Rcm-ET) is used to extend the digital input module (AX-EM-1600D) through

the back plate. The instructions are as follows:

1. Right click AX-EM-ECM-ET in the device panel to add the digital input module (AX_EM_1600D). Control 16

channels through two sets of variables InByte0 and InByte1 in the Module/IO mapping tab, as shown in the following

figure.

Figure 4-13 Variable mapping of digital input module

2. After compiling, log in to download the project and run it.

4.6.2 Digital output module

EtherCAT remote extension module (AX-EM-Rcm-ET) is used to extend the digital output module (AX-EM-0016DP/

AX-EM-0016DN) through the back plate. The instructions are as follows:

1. Right click AX-EM-ECM-ET in the device panel to add the digital output module (AX_EM_0016DP). Control 16

channels through two sets of variables OutByte0 and OutByte1 in the Module/IO mapping tab, as shown in the

following figure.

Figure 4-14 Variable mapping of digital output module

2. After compiling, log in to download the project and run it.

AX series programmable controller software manual Module Configuration

-67-

4.6.3 Analog input module

EtherCAT remote extension module (AX-EM-Rcm-ET) is used to extend the analog input module (AX-EM-4AD) through

the back plate. The instructions are as follows:

1. Right click AX-EM-ECM-ET in the device panel to add the analog input module (AX_EM_4AD). Control the module

through the multiple sets of variables in the Module/IO mapping tab, as shown in the following figure.

Figure 4-15 Variable mapping of analog input module

2. After compiling, log in to download the project and run it.

3. Variable description: the following table uses channel 0 as an example to illustrate the use of all variables for channel
0.

Table 4-6 Channel 0 variable description

Parameters Value Valid bit Variable name Variable type

Filter

sinc5+sinc1 00

[1:0] FP

WORD

sinc5+sinc1+enhance 50/60 01

sinc3 10

Reserved

Channel 0

configuration

Enable

channel 0

Enable 1
[0]

CH0

Disable 0

Disconnection

detection

Enable 1
[1]

Disable 0

Conversion

mode

0V–5V 000

[4:2]

0V–10V 001

-5–5V 010

-10V–10V 011

-20mA–20mA 100

0mA–20mA 101

4mA–20mA 111

Over-limit mark
Enable 1

[5]
Disable 0

Over range

detection

enable bit

Enable 1
[6]

Disable 0

Reserved [15:7]

Channel 0 data Data [15:0] IN0

Channel 0 fault code

(See Table 4-8 for

details)

Indicates the current fault

information of the module.
 [15:0] IN0_Fault_Code

AX series programmable controller software manual Module Configuration

-68-

Table 4-7 Mapping of rated range and actual input analog value

Type Input rated range Mapped digital value

Analog voltage input

-10V–10V -10000–+10000

0V–10V 0–10000

-5V–+5V - 5000–+5000

0V–5V 0–5000

Analog current input

-20mA–20mA -20000–20000

0mA–20mA 0–20000

4mA–20mA 4000–20000

Table 4-8 Channel fault code

Channel 0 Meaning

A0 Channel 0 is disconnected.

A1 Channel 0 exceeds the limits (exceeds the range of -25V–+25V)

A2
Channel 0 exceeds the upper limit of the range (exceeds the upper limit of the

currently selected voltage range)

A3
Channel 0 exceeds the lower limit of the range (exceeds the lower limit of the

currently selected voltage range)

Channel 1 Meaning

A4 Channel 1 is disconnected.

A5 Channel 1 exceeds the limits (exceeds the range of -25V–+25V)

A6
Channel 1 exceeds the upper limit of the range (exceeds the upper limit of the

currently selected voltage range)

A7
Channel 1 exceeds the lower limit of the range (exceeds the lower limit of the

currently selected voltage range)

Channel 2 Meaning

A8 Channel 2 is disconnected.

A9 Channel 2 exceeds the limits (exceeds the range of -25V–+25V)

AA
Channel 2 exceeds the upper limit of the range (exceeds the upper limit of the

currently selected voltage range)

Ab
Channel 2 exceeds the lower limit of the range (exceeds the lower limit of the

currently selected voltage range)

Channel 3 Meaning

AC Channel 3 is disconnected.

Ad Channel 3 exceeds the limits (exceeds the range of -25V–+25V)

AE
Channel 3 exceeds the upper limit of the range (exceeds the upper limit of the

currently selected voltage range)

AF
Channel 3 exceeds the lower limit of the range (exceeds the lower limit of the

currently selected voltage range)

4.6.4 Analog output module

EtherCAT remote extension module (AX-EM-Rcm-ET) is used to extend the analog output module (AX-EM-4DA) through

the back plate. The instructions are as follows:

AX series programmable controller software manual Module Configuration

-69-

1. Right click AX-EM-ECM-ET in the device panel to add the analog output module (AX_EM_4DA). Control the module

through the multiple sets of variables in the Module/IO mapping tab, as shown in the following figure.

Figure 4-16 Variable mapping of analog output module

2. After compiling, log in to download the project and run it.

3. Variable description: the following table uses channel 0 as an example to illustrate the use of all variables for channel

0.

Table 4-9 Channel 0 variable description

Parameters Value Valid bit Variable name

Channel 0 configuration

Enable

channel 0

Enable 1
[0]

Configuration_CH0

Disable 0

Disconnectio

n detection
Reserved [1]

Conversion

mode

0V–5V 000

[4:2]

0V–10V 001

-5V–5V 010

-10V–10V 011

4mA–20mA 100

0mA–20mA 101

Output status

after stop

Clear output 00

[6:5]
Keep output 01

Output preset

value
10

Reserved [15:7]

Channel 0 code value Data [15:0] Data_CH0

Channel 0 output preset

value
Output preset value [15:0] Data_Default0

Channel 0 fault code

(See Table 4-11 for details)

Indicates the current fault

information of the module.
 [15:0] INT0_Fault_Code

AX series programmable controller software manual Module Configuration

-70-

Table 4-10 Mapping of rated range and actual input analog value

Type Input rated range Mapped digital value

Analog voltage output

-10V–10V -10000–+10000

0V–10V 0–10000

-5V–5V -5000–+5000

0V–5V 0–5000

Analog current output
4mA–20mA 4000–20000

0mA–20mA 0–20000

Table 4-11 Channel fault code

Channel 0 Meaning

B0 The current output of channel 0 is disconnected.

B1 The voltage output of channel 0 is short-circuited.

Channel 1 Meaning

B2 The current output of channel 1 is disconnected.

B3 The voltage output of channel 1 is short-circuited.

Channel 2 Meaning

B4 The current output of channel 2 is disconnected.

B5 The voltage output of channel 2 is short-circuited.

Channel 3 Meaning

B6 The current output of channel 3 is disconnected.

B7 The voltage output of channel 3 is short-circuited.

Output module power failure Meaning

B8 The 24V power board of the output module is disconnected.

4.6.5 Temperature module

EtherCAT remote extension module (AX-EM-Rcm-ET) is used to extend the temperature module (AX-EM-4PTC) through

the back plate. The instructions are as follows:

1. Right click AX-EM-ECM-ET in the device panel to add the temperature module (AX_EM_4PTC). Control the module

through the multiple sets of variables in the Module/IO mapping tab, as shown in the following figure.

Figure 4-17 Variable mapping of temperature module

AX series programmable controller software manual Module Configuration

-71-

2. After compiling, log in to download the project and run it.

3. Variable description: the following tables describe the use of all variables for the four channels.

Table 4-12 Variable description

Parameters Value Valid bit Variable name

Temperature of channel 0 [15:0] Temperature0

Temperature of channel 1 [15:0] Temperature1

Temperature of channel 2 [15:0] Temperature2

Temperature of channel 3 [15:0] Temperature3

Disconnection detection

result of channel 0

Normal 00
[1:0]

Breakup

Disconnected 01

Disconnection detection

result of channel 1

Normal 00
[3:2]

Disconnected 01

Disconnection detection

result of channel 2

Normal 00
[9:8]

Disconnected 01

Disconnection detection

result of channel 3

Normal 00
[11:10]

Disconnected 01

Enable channel 0
Enable 1

[0]

Config_Word0

Disable 0

Display mode
°C 0

[1]
°F 1

Cold junction

compensation method

Internal cold junction

compensation
0

[2]
External cold junction

compensation
1

Sensor disconnection

detection

Enable 1
[3]

Disable 0

Over-limit detection
Enable 1

[4]
Disable 0

Sensor type

B

E

J

K

N

R

S

T

PT100

PT500

PT1000

CU500

000

001

010

011

100

101

110

111

1000

1001

1010

1011

[11:8]

2-Wire

3-Wire

4-Wire

(For RTD only)

00

01

10

[13:12]

Filter time 0–100 0–100 [6:0]

Config_Word1
Enable channel 1

Enable 1
[8]

Disable 0

Display mode
°C 0

[9]
°F 1

AX series programmable controller software manual Module Configuration

-72-

Parameters Value Valid bit Variable name

Cold junction

compensation method

Internal cold junction

compensation
0

[10]
External cold junction

compensation
1

Sensor disconnection

detection

Enable 1
[11]

Disable 0

Over-limit detection
Enable 1

[12]
Disable 0

Sensor type

B

E

J

K

N

R

S

T

PT100

PT500

PT1000

CU500

000

001

010

011

100

101

110

111

1000

1001

1010

1011

[3:0]

Config_Word2

2-Wire

3-Wire

4-Wire

(For RTD only)

00

01

10

[5:4]

Filter time 0–100 0–100 [14:8]

Enable channel 2
Enable 1

[0]

Config_Word3

Disable 0

Display mode
°C 0

[1]
°F 1

Cold junction

compensation method

Internal cold junction

compensation
0

[2]
External cold junction

compensation
1

Sensor disconnection

detection

Enable 1
[3]

Disable 0

Over-limit detection
Enable 1

[4]
Disable 0

Sensor type

B

E

J

K

N

R

S

T

PT100

PT500

PT1000

CU500

000

001

010

011

100

101

110

111

1000

1001

1010

1011

[11:8]

AX series programmable controller software manual Module Configuration

-73-

Parameters Value Valid bit Variable name

2-Wire

3-Wire

4-Wire

(For RTD only)

00

 01

 10

[13:12]

Filter time 0–100 0–100 [6:0]

Config_Word4

Enable channel 3
Enable 1

[8]
Disable 0

Display mode
°C 0

[9]
°F 1

Cold junction

compensation method

Internal cold junction

compensation
0

[10]
External cold junction

compensation
1

Sensor disconnection

detection

Enable 1
[11]

Disable 0

Over-limit detection
Enable 1

[12]
Disable 0

Sensor type

B

E

J

K

N

R

S

T

PT100

PT500

PT1000

CU500

000

001

010

011

100

101

110

111

1000

1001

1010

1011

[3:0]

Config_Word5

2-Wire

3-Wire

4-Wire

(For RTD only)

00

01

10

[5:4]

Filter time 0–100 0–100 [14:8]

Sampling period of

channel 0

250ms

500ms

1000ms

01

10

11

[1:0]

Config_Word6

Sampling period of

channel 1

250ms

500ms

1000ms

01

10

11

[3:2]

Sampling period of

channel 2

250ms

500ms

1000ms

01

10

11

[5:4]

Sampling period of

channel 3

250ms

500ms

1000ms

01

10

11

[7:6]

AX series programmable controller software manual Module Configuration

-74-

Table 4-13 Supported sensor types and measurement range

Item Sensor name
Temperature range in

Celsius

Temperature range in

Fahrenheit

Thermal resistor type

PT100 -200.0°C–850°C -328.0°F–1562.0°F

PT500 -200.0°C–850°C -328.0°F–1562.0°F

PT1000 -200.0°C–850°C -328.0°F–1562.0°F

CU100 -50.0°C–150°C -58.0°F–302.0°F

Thermocouples type

B 200.0°C–1800°C 392.0°F–3272.0°F

E -270.0°C–1000°C -454.0°F–1832.0°F

N -200.0°C–1300°C -328.0°F–2372.0°F

J -210.0°C–1200°C -346.0°F–2192.0°F

K -270.0°C–1370°C -454.0°F–2498.0°F

R -50.0°C–1765°C -58.0°F–3209.0°F

S -50.0°C–1765°C -58.0°F–3209.0°F

T -270.0°C–400°C -454.0°F–752.0°F

4.7 Priority setting of each module (recommended value)

4.7.1 Setting priority

If the created project contains multiple functional modules, create multiple tasks and set the task priority as follows. Table

4-14 shows the recommended values for task priority.

Figure 4-18 Example of task project priority settings

Table 4-14 Setting priority

Function module Recommended priority

PlcCfg module 31

ModbusTCP 15–30

ModbusRTU 15–30

High-speed I/O 1–15

Analog input/output 1–15

Temperature module 1–15

EtherCAT 0

AX series programmable controller software manual Module Configuration

-75-

4.7.2 Configuring sub-device bus cycle options

Under the Controller settings > Bus cycle > Bus cycle task of the AX7x device, the Bus cycle task list provides the

tasks defined in the task configuration of the current valid project (such as "MainTask", "EtherCAT Master”). Select one of

the tasks as the bus cycle of the current project, or select the option <unspecified>, which indicates that the shortest task

cycle time or the fastest execution cycle will be applied. You can switch to another settings, but be sure to note the

following.

Note: Before modifying the <unspecified> setting, be aware that it is a default action defined by the device description.

By default, the task can be defined with a shortest cycle time or a longest cycle time. Please check this carefully before

applying this setting.

To improve the stability of the system when using expansion modules and EtherCAT modules (especially the

EtherCAT_Master_SoftMotion module), you should select the task corresponding to each module in EtherCAT I/O

Mapping > Bus Cycle Options. The reference program is as follows.

Figure 4-19 Expansion module bus cycle task setting

AX series programmable controller software manual Device Diagnosis

-76-

 Device Diagnosis 5

AX7x equipment diagnostic information is reflected in three ways, namely fault indicator, digital tube and diagnostic code.

Fault indicators show the system and bus error. Digital tubes display the fault code of a specific function module.

Diagnostic codes further indicate the specific types of faults, which can be generally searched by upper computer

software.

5.1 Fault indicator

The AX7x fault indicator is mainly composed of two parts. The first part is mainly the system and bus indicator lights. The

second part is mainly the high-speed input and output indicators.

Dial switch

Input/Output

indicatorSystem indicator

Digital tube

Figure 5-1 Fault indicator diagram

5.1.1 System and bus fault indicator

Table 5-1 System and bus fault indicator

Fault indicator name Error type

SF System fault

BF Bus communication fault

CAN CAN bus fault

ERR Module fault

Note: When connecting multiple programmable controllers, you can click the Wink button on the software platform to

observe the simultaneous flashing of the SF, BF, CAN, and ERR indicators to identify the device.

5.1.2 High-speed input/output indicator

If the output/input of the port is at a high level, the indicator corresponding to the port is on, and if the output/input is at a

low level, the corresponding indicator is off.

AX series programmable controller software manual Device Diagnosis

-77-

5.2 Fault code

Fault

code
Module Fault type Solution

16#10

CPU module

PlcCfg

Error setting local new IP
Check the underlying network

configuration file.

16#11
Error setting local new subnet

mask

Check the underlying network

configuration file.

16#12
Failed to read the local IP and

subnet mask

Check the underlying network

configuration file.

16#13 Abnormal time setting format Check the time setting format.

16#14 Error setting motion controller time Check the underlying code.

16#15
Error getting motion controller real

time
Check the underlying code.

16#20

COM1 485

ModbusRTU_Slave1

Failed to open serial port COM1

Check whether the underlying

serial port number corresponds

to the hardware.

16#21 Baud rate setting failed
Check the baud rate setting of

the slave node

16#22
Data bit, stop bit or parity bit setting

failed

Check the specific error code of

Invtmatic Studio ErrorID. Data bit:

ErrorID=3, check bit ErrorID=4,

stop bit ErrorID=5.

16#23 Slave function enable failed
System error Err_Sym, or slave

enable is turned on.

16#24 Slave read and write error
Check detailed parameter

settings

16#25

COM1 485

ModbusRTU_Master1

Failed to open serial port COM1

Check whether the underlying

serial port number corresponds

to the hardware.

16#26 SlaveID setting failed
Check the SlaveID number

settings of the master node.

16#27
Data bit, stop bit or parity bit setting

failed

Check whether the data bit

setting value is 7 or 8, whether

the check bit is 0, 1 or 2, and

whether the stop bit is 1 or 2.

16#28 Master function enable failed
System error Err_Sym, or master

enable is turned on.

16#29

One of the the following goes

wrong: master read/write coil, read

holding register, write a single

register, write multiple registers

Check that the master-slave

initialization parameter

configuration is consistent and

that the hardware connection is

correct.

16#2A
Two function block enabled at the

same time.

Ensure that only one of the

function block is enabled in the

program

16#30 COM2 485 Failed to open serial port COM2 Check whether the underlying

AX series programmable controller software manual Device Diagnosis

-78-

Fault

code
Module Fault type Solution

ModbusRTU_Slave2 serial port number corresponds

to the hardware.

16#31 Baud rate setting failed
Check the baud rate setting of

the slave node

16#32
Data bit, stop bit or parity bit setting

failed

Check the specific error code of

Invtmatic Studio ErrorID. Data bit:

ErrorID=3, check bit ErrorID=4,

stop bit ErrorID=5.

16#33 Slave function enable failed
System error Err_Sym, or slave

enable is turned on.

16#34 Slave read and write error
Check detailed parameter

settings

16#35

COM2 485

ModbusRTU_Master2

Failed to open serial port COM2

Check whether the underlying

serial port number corresponds

to the hardware.

16#36 SlaveID setting failed
Check the SlaveID number

settings of the master node.

16#37
Data bit, stop bit or parity bit setting

failed

Check whether the data bit

setting value is 7 or 8, whether

the check bit is 0, 1 or 2, and

whether the stop bit is 1 or 2.

16#38 Master function enable failed
System error Err_Sym, or master

enable is turned on.

16#39

One of the the following goes

wrong: master read/write coil, read

holding register, write a single

register, write multiple registers

Check that the master-slave

initialization parameter

configuration is consistent and

that the hardware connection is

correct.

16#3A
Two function block enabled at the

same time.

Ensure that only one of the

function block is enabled in the

program

16#60

modbusTCP_Slave

Error configuring slave IP
Check the underlying

corresponding configuration.

16#61 Port setting error Check the port settings

16#62

Failed to listen to sockets (failed to

create socket, failed to bind socket,

failed to listen to socket)

Check the corresponding

configuration.

16#63 Failed to accept client
Check the corresponding

configuration.

16#64 Failed to accept client data
Check the corresponding

configuration.

16#65 Modbus reply error (modbus_reply)
Check the corresponding

configuration.

16#66

modbusTCP_Master

Error setting slave IP or port
Check the IP setting or whether it

is the default unit number.

16#67 Failed to set slave node Check the parameter settings.

16#68 Failed to connect slave node
Check the parameter settings,

such as slave IP or port.

16#69 Write slave register failure Check the parameter settings.

16#6A Read slave register failure Check the parameter settings.

AX series programmable controller software manual Device Diagnosis

-79-

Fault

code
Module Fault type Solution

16#A0

Analog output module

AX-EM-4AD

Channel 0 is disconnected.
Check whether the wires are

connected properly.

16#A1

Channel 0 exceeds the limits (that

is, the voltage exceeds the range of

-25V–+25V, and the current

exceeds the range of -104mA–

104mA)

Check if the input voltage

(current) is out of range.

16#A2

Channel 0 exceeds the upper limit

of the range (exceeds the upper

limit of the currently selected

voltage range)

Reduce the input voltage

(current) value, or use a wider

range of conversion modes.

16#A3

Channel 0 exceeds the lower limit

of the range (exceeds the lower

limit of the currently selected

voltage range)

Increase the input voltage

(current) value, or use a wider

range of conversion modes.

16#A4 Channel 1 is disconnected.
Check whether the wires are

connected properly.

16#A5

Channel 1 exceeds the limits (that

is, the voltage exceeds the range of

-25V–+25V, and the current

exceeds the range of -104mA–

104mA)

Check if the input voltage

(current) is out of range.

16#A6

Channel 1 exceeds the upper limit

of the range (exceeds the upper

limit of the currently selected

voltage range)

Reduce the input voltage

(current) value, or use a wider

range of conversion modes.

16#A7

Channel 1 exceeds the lower limit

of the range (exceeds the lower

limit of the currently selected

voltage range)

Increase the input voltage

(current) value, or use a wider

range of conversion modes.

16#A8 Channel 2 is disconnected.
Check whether the wires are

connected properly.

16#A9

Channel 2 exceeds the limits (that

is, the voltage exceeds the range of

-25V–+25V, and the current

exceeds the range of -104mA–

104mA)

Check if the input voltage

(current) is out of range.

16#AA

Channel 2 exceeds the upper limit

of the range (exceeds the upper

limit of the currently selected

voltage range)

Reduce the input voltage

(current) value, or use a wider

range of conversion modes.

16#Ab

Channel 2 exceeds the lower limit

of the range (exceeds the lower

limit of the currently selected

voltage range)

Increase the input voltage

(current) value, or use a wider

range of conversion modes.

16#AC Channel 3 is disconnected.
Check whether the wires are

connected properly.

16#Ad

Channel 3 exceeds the limits (that

is, the voltage exceeds the range of

-25V–+25V, and the current

exceeds the range of -104mA–

104mA)

Check if the input voltage

(current) is out of range.

AX series programmable controller software manual Device Diagnosis

-80-

Fault

code
Module Fault type Solution

16#AE

Channel 3 exceeds the upper limit

of the range (exceeds the upper

limit of the currently selected

voltage range)

Reduce the input voltage

(current) value, or use a wider

range of conversion modes.

16#AF

Channel 3 exceeds the lower limit

of the range (exceeds the lower

limit of the currently selected

voltage range)

Increase the input voltage

(current) value, or use a wider

range of conversion modes.

16#b0

Analog output module

AX-EM-4DA

The current output of channel 0 is

disconnected.

Check whether the current

channel is disconnected and

reconnect it if it is

16#b1
The voltage output of channel 0 is

short-circuited.

Check whether the voltage

channel is short-circuited. If so,

restore it to normal.

16#b2
The current output of channel 1 is

disconnected.

Check whether the current

channel is disconnected and

reconnect it if it is

16#b3
The voltage output of channel 1 is

short-circuited.

Check whether the voltage

channel is short-circuited. If so,

restore it to normal.

16#b4
The current output of channel 2 is

disconnected.

Check whether the current

channel is disconnected and

reconnect it if it is

16#b5
The voltage output of channel 2 is

short-circuited.

Check whether the voltage

channel is short-circuited. If so,

restore it to normal.

16#b6
The current output of channel 3 is

disconnected.

Check whether the current

channel is disconnected and

reconnect it if it is

16#b7
The voltage output of channel 3 is

short-circuited.

Check whether the voltage

channel is short-circuited. If so,

restore it to normal.

16#b8
The 24V power board of the output

module is disconnected.

Check whether the 24V power

supply is normal and whether

there is reverse connection.

16#C0

Temperature module

AX-EM-4PTC

Channel 0 exceeds the upper limit

of range (the actual temperature

exceeds the set upper limit)

Check whether the set

temperature upper limit is greater

than the actual value.

16#C1

Channel 0 exceeds the lower limit

of range (the actual temperature

exceeds the set lower limit)

Check whether the set

temperature lower limit is smaller

than the actual value.

16#C2

Channel 1 exceeds the upper limit

of range (the actual temperature

exceeds the set upper limit)

Check whether the set

temperature upper limit is greater

than the actual value.

16#C3

Channel 1 exceeds the lower limit

of range (the actual temperature

exceeds the set lower limit)

Check whether the set

temperature lower limit is smaller

than the actual value.

16#C4

Channel 2 exceeds the upper limit

of range (the actual temperature

exceeds the set upper limit)

Check whether the set

temperature upper limit is greater

than the actual value.

AX series programmable controller software manual Device Diagnosis

-81-

Fault

code
Module Fault type Solution

16#C5

Channel 2 exceeds the lower limit

of range (the actual temperature

exceeds the set lower limit)

Check whether the set

temperature lower limit is smaller

than the actual value.

16#C6

Channel 3 exceeds the upper limit

of range (the actual temperature

exceeds the set upper limit)

Check whether the set

temperature upper limit is greater

than the actual value.

16#C7

Channel 3 exceeds the lower limit

of range (the actual temperature

exceeds the set lower limit)

Check whether the set

temperature lower limit is smaller

than the actual value.

16#C8
Over-limit setting error (set upper

limit is smaller than the lower limit)

Check whether the set

temperature upper limit is greater

than the lower limit.

16#C9
Channel 0 is disconnected.

(Reserved)

16#CA
Channel 1 is disconnected.

(Reserved)

16#CB
Channel 2 is disconnected.

(Reserved)

16#CC
Channel 3 is disconnected.

(Reserved)

AX series programmable controller software manual Controller Program Structure and Execution

-82-

 Controller Program Structure and Execution 6

6.1 Program structure

The software model is represented by a hierarchical structure. Each layer implies many characteristics of the underlying

layer. The software model describes the basic software elements and their interrelationships. These software elements

contain: devices, applications, tasks, global variables, access paths, and application objects. Figure 6-1 shows their

internal structure, which is consistent with the software model of the IEC 61131-3 standard.

Task 2

FB2

Program 1 Program 2

Application

Task 3

Program 3 Program 4

Application

Global and direct address variable

Access path

Communication function

Device

Task 1

FB1

Task 4

FB1 FB2

Figure 6-1 Program hierarchical structure

6.2 Task

A program can be written in different programming languages. A typical program consists of a number of interconnected

function blocks that can exchange data with each other. The execution of different parts of a program is controlled by

"tasks". Tasks can be configured to cause a series of programs or blocks to execute periodically or to be triggered by a

specific event to start execution.

The Task Manager tab in the device tree can be used to control the execution of other subprograms within the project, in

addition to the specific controller_PRG program. A task is used to specify the properties of a program organization unit at

run time. It is an execution control element with the ability to be called. Multiple tasks can be established in a task

configuration, and multiple program organization units can be called in a task. Once the task is set, it can control the

program to execute periodically or to be triggered by a specific event to start execution.

In the task configuration, define it with name, priority, and startup type of the task. This startup type can be defined either

by time (cyclic, random) or by the timing of an internal or external trigger task, such as a rising edge of a Boolean global

variable or a particular event in the system. For each task, you can set a sequence of programs to be started by the task. If

this task is executed in the current cycle, these programs will be processed within one cycle. The combination of priority

and conditions will determine the timing of task execution. The task setting interface is shown in Figure 6-2.

AX series programmable controller software manual Controller Program Structure and Execution

-83-

Figure 6-2 Task configuration interface

The programmer must follow the following rules:

 The maximum number of cyclic tasks is 100.

 The maximum number of free running tasks is 100.

 The maximum number of event-triggered tasks is 100.

 Depending on the target system, the PLC_PRG may be executed as a free program under any circumstances,

instead of being manually inserted into the task configuration.

 Programs are processed and called in a top-down order within the task editor.

6.3 Program execution

The following figure describes in detail the complete process of program execution inside the AX7x programmable

controller. The main process includes input sampling, program execution and output refresh.

Read input

Image register

Image register

Write output

1. Input sample

2. Program

execution

3. Output refresh

Task 1

Task 2

Figure 6-3 Controller execution

AX series programmable controller software manual Controller Program Structure and Execution

-84-

1) Input sampling

At the beginning of each scan cycle, the controller detects the state of the input device (such as switch, button) and writes

the state to the input image register area. During program execution, the running system reads data from the input image

area for program resolution. It is important to note that the input refresh only occurs at the beginning of a scan. During the

scan, the input state will not change even if the output state changes.

2) Program execution

During the program execution phase of the scan cycle, the controller reads the status and data from the input image area

or output image area and performs logical and arithmetic operations according to the commands. The operation results

are stored in the corresponding unit in output image area. In this phase, only the contents in the input image registers

remain unchanged, and the contents in other image registers will change with the execution of the program.

3) Output refresh

During the output refresh phase, also known as the write output phase, the controller transmits the state and data in the

output image area to the output point, and isolates and amplifies the power in a certain way to drive the external load. The

programmable controller completes not only the tasks of the above three phases, but also auxiliary tasks such as internal

diagnosis, communication, public processing, and input/output services in a scan cycle.

The AX7x programmable controller repeats the process of 1) to 3) above, and the time for each repetition is one work

cycle (or scan cycle). It can be seen from the scanning method of the controller that the controller has a shorter scanning

time to complete the control task to quickly respond to the change of input and output data, and the duty cycle is generally

controlled within the order of ms. Therefore, it is necessary to develop a stable, reliable and fast-response real-time

system for AX7x programmable controller operation system.

Since the AX7x programmable controller adopts a cyclic working mode, the input signal will only be refreshed at the

beginning of each cycle, and the output will be concentrated at the end of each cycle. It will inevitably produce a lag

between the output signal and the input signal. It takes a while for a signal input to change from the input of the AX7x

programmable controller to the output of the controller to respond to the change in the input signal. Lag time is an

important parameter that should be understood when designing AX7x programmable controller control system. Generally,

the lag time is related to the following factors:

 Filter time of the input circuit. It is determined by the time constant of the hardware RC filter circuit. The input lag time

can be adjusted by changing the time constant. For example, Table 6-1 shows the technical parameters of the

AX-EM-1600D digital input module, where "port filter time" indicates that the filter time of this input module is 10ms.

Table 6-1 AX-EM-1600D Digital input module parameters

Item Specifications

Input channel 16

Input connection mode 18-point terminal

Input voltage level 24V (up to 30V)

Input current (typical) 4.7mA

ON voltage >15VDC

OFF voltage <5VDC

Port filter time 10ms

Input resistance 5.4kΩ

Input signal form Voltage DC input

Isolation method Optocoupler

Input dynamic display When the input is valid, the indicator is on.

 Lag time of the output circuit. It is related to the output circuit mode. Generally, the lag time of the relay output mode

is about 10ms, and the lag time of the transistor output mode is less than 1ms.

 Working mode of the controller cyclic scanning.

 Arrangement of statements in the user program.

AX series programmable controller software manual Controller Program Structure and Execution

-85-

To allow readers to better understand the whole process, the following is a simple example of the ladder diagram program

to show its input and output and how the lagging is produced The program logic is shown in Figure 6-4.

Figure 6-4 AX7x programmable controller program

bInput has a hardware mapping relationship with the external input button. When the button is pressed, bInput is ON.

bOutput has a hardware mapping relationship with the coil of the external relay. When bOutput is ON, the coil of the relay

will also be energized. Within the AX7x programmable controller, the handling relationship is shown in Figure 6-6. bInput

is not immediately turned ON when the input button is pressed. Because the input sampling is only executed at the

beginning of a cycle and the button signal has missed the sampling phase, it usually will be executed at the beginning of

the next cycle. In the program in Figure 6-6, the state of bInput is assigned to bOutput. Since there is a certain program

calculation during the program running, the bOutput needs a certain processing time of the program to be set to ON. Since

the output refresh occurs at the end of the program process, it is at the end of the cycle that the bOutput passes its value

to the actual hardware via the output refresh function before the coil is finally energized. The following figure is a relatively

ideal state, with the final output having only one cycle of latency.

: Input refresh

: Output fresh
0

Program cycle time

END;0

Program processing time

Button input
OFF

END;0

bInput
OFF

bOutput
OFF

Coil output
OFF

Delay time

(Min. 1 cycles)

Figure 6-5 Fastest output case

In addition, we should also consider the worse situation. When a cycle of input sampling has just ended, the external input

button is ON at this time. Since the input signal needs to be loaded into the input image area at the beginning of the next

cycle and the actual output will not be loaded into the output image area until the end of the second cycle, the whole

process is shown in Figure 6.7. In this case, the output delay is nearly 2 cycles, which is the output with longest delay

time.

: Input refresh

: Output refresh
0

Program cycle time

END;0

Program processing time

Button input
OFF

END;0

bInput
OFF

bOutput
OFF

Coil output
OFF

Delay time

(Min. 2 cycles)

Figure 6-6 Slowest output case

AX series programmable controller software manual Controller Program Structure and Execution

-86-

6.4 Task execution type

At the top of the task configuration tree, there is a Task Configuration tab, which shows every defined task by their

names. The call of POUs for specific tasks is not displayed in the task configuration tree. Each individual task can be

edited and configured for the type of execution, which includes Cyclic, Event, Freewheeling, and Status. See Figure 6-7

for details.

Figure 6-7 Task execution type

1) Cyclic

The processing time of the program will vary depending on whether the commands used in the program are executed or

not. Therefore, the actual execution time varies with each scan cycle. By using the cyclic mode, the program can be

executed repeatedly for a certain cycle time. Even if the execution time of the program changes, the refresh interval can

be maintained. It is recommended that you give priority to the cyclic start mode. For example, if you set the corresponding

task to the Cyclic mode and set the interval to 10ms, the actual program execution timing is shown in Figure 6-8.

Button input

Actual execution time of

the program

END

Waiting time

END END END

8ms 2ms 6ms 4ms 7ms 3ms 8ms

10ms 10ms 10ms 10ms

Fixed cycle setting time

2ms

Figure 6-8 Cyclic execution sequence

If the actual execution time of the program is less than the set cyclic time, the remaining time is used for waiting. If there

are low-priority tasks in the application that have not been executed, the remaining waiting time is used to execute these

tasks. The priority of the task will be described in detail later.

2) Freewheeling

Tasks are processed as soon as the program starts running, and tasks will be automatically restarted in the next cycle

after the end of a running cycle. This execution mode is not affected by the program scan cycle. That is to ensure that the

last instruction of the program is executed each time before entering the next cycle. Otherwise, the program cycle will not

end. Figure 6-9 shows the timing of freewheeling sequence.

Actual execution time

of the program

END;0

8ms 6ms 7ms 3ms 8ms

END;0 END;0

7ms

END;0 END;0 END

Figure 6-9 Timing of freewheeling sequence

Since the freewheeling execution mode does not have a fixed task time, the execution time may be different each time.

Therefore, the real-time performance of the program cannot be guaranteed, and this mode is seldom used in practical

applications.

AX series programmable controller software manual Controller Program Structure and Execution

-87-

3) Event

If the variable in the event area gets a rising edge, the task begins.

4) Status

If the variable in the event area is TRUE, the task begins. The Status mode is similar to the Event mode, except that the

task will be executed when the trigger variable of status triggering is TRUE, and will not be executed when it is FALSE.

The event trigger only collects the effective signal of the rising edge of the trigger variable. Figure 6-10 compares the

event and status trigger modes, and the green solid line is the Boolean variable status selected by the two modes. Table

6-2 shows the comparison result.

Figure 6-10 Task input trigger signal

Different types of tasks showed different responses at sampling points 1–4 (purple). The trigger condition of Status mode

is fulfilled when a specific event is TRUE, but an event-driven task requires the event to change from FALSE to TRUE. If

the sampling frequency of the task is too low, the rising edge of the event may not be detected.

Table 6-2 Comparison result between Event and Status trigger modes

Execution point 1 2 3 4

Event No execute Execute Execute Execute

Status No execute Execute No execute No execute

6.5 Task priority

1) Task priority setting

You can set the priority of the task, with a total of 32 levels (a number from 0 to 31, with 0 the highest priority and 31 the

lowest priority). When a program is executing, tasks with high priority takes precedence over tasks with low priority. A task

with high priority 0 can interrupt the execution of lower priority programs in the same resource, so that the execution of the

program with low priority is slowed down.

Note: When assigning task priority levels, do not assign tasks with the same priority. If there are other task views that

precede tasks with the same priority, the result may be uncertain and unpredictable.

If the task type is "Cyclic", it will be executed in a cycle according to the time set in "Interval". The specific settings are

shown in Figure 6-11.

Figure 6-11 Cyclic mode configuration

Example: Suppose there are 3 different tasks with three different priority levels, the specific assignments are as follows.

: Task 1 with Priority set to 0 and Interval to 10ms

: Task 2 with Priority set to 1 and Interval to 30ms

: Task 3 with Priority set to 2 and Interval to 40ms

AX series programmable controller software manual Controller Program Structure and Execution

-88-

Inside the controller, the timing relationship of each task is shown in Figure 6-13, and the specific description is as follows:

0–10ms: Execute Task 1 first (highest priority), and if the program is finished within this cycle, the remaining time will be

used to execute the Task 2 program. However, if Task 2 has not been fully executed after10ms, Task 2 will be interrupted

because Task 1 is executed every 10 milliseconds and has a highest priority.

10–20ms: Execute the programs in Task 1 first. If there is any time left, execute the unfinished Task 2 in the previous

cycle.

20–30ms: Since Task 2 is executed every 30ms and Task 2 has been finished within 10–20ms, there is no need to

execute task 2 at this time, just execute Task 1 once.

30–40Ms: Similar to before.

40–50ms: Task 3 appears at this time. Since Task 3 has the lowest priority, Task 3 can only be executed after ensuring

that Task 2 has been thoroughly executed.

0 10 20 30 40 50 t(ms)

Task 1 interrupts

Task2.

Task 1 interrupts

Task 3.

Figure 6-12 Task interrupt execution order

2) AX7x task priority configuration

When the upper computer software of AX7x controller creates a new standard project, MainTask is created by default in

the task configuration with a priority of 0. The priority of newly created tasks is also 0 by default, but to ensure that

important tasks such as motion control are prioritized, the performance of the controller can be used appropriately in some

applications that require high-performance motion control (MC). The following table shows the recommended task priority

order setting (if there is only one task, the task priority can be set at will):

Table 6-3 Task priority configuration

Task Type Recommended Priority

PlcCfg module 31

ModbusTCP 15–30

ModbusRTU 15–30

High-speed I/O 1–15

Analog input/output 1–15

Temperature module 1–15

EtherCAT 0

The smaller the priority value, the higher the priority. POU with a higher priority can interrupt the execution of POU with a

lower priority, as shown in Figure 6-13, where ECT stands for EtherCAT.

AX series programmable controller software manual Controller Program Structure and Execution

-89-

IO
UPR

G

M

C

ETC cycle (priority0) ETC cycle ETC cycle ETC cycle ETC cycle

Execution

complete

Execution

complete

Pause UPRG..IO Pause UPRG

Pause

IO
UPR

G

M

C
IO

UPR

G

M

C
IO

UPR

G

M

C
IO

UPR

G

M

C

Pause UPRG..IO

UPR

G
Pause ..UPRG.. Pause

UPR

G

Execution

complete

Execution

complete

Execution

complete

Execution

complete

Execution

complete

Task cycle (priority16)

Task cycle (priority 17)

Figure 6-13 POU execution sequence

As shown in Figure 6-13,

When the controller executes a task, there is a time alignment point that is not observed by the user, as shown on the left

side of the figure above. Starting at this point, the execution will start in the order of highest priority -> second highest

priority -> lowest priority.

A low-priority task may be interrupted by a high-priority task while it is being executed, and when the execution of the

high-priority task is complete, the interrupted task with low-priority will continues.

The EtherCAT task is the highest priority task, which is entered according to the EtherCAT cycle, and all POUs within the

task are executed once before executing the lower priority task.

3) Requirements for execution cycle setting in task configuration

The AX7x system upper computer software uses multitasking to execute the "tasks" of the user program, and each "task"

is assigned a different execution cycle. Some global variables may be accessed and modified in different POUs, so the

interactive synchronization of global variables should be carried out at the "time alignment point" of the task. For the cycle

of a cyclic task setting, the cycle time of different cyclic task types is an integer multiple.

For example, the EtherCAT task cycle time is set to 4ms, 8ms, while the normal cycle is set to 400ms, and the cycle of

lower priority is set to 100ms or 200ms. Do not set the EtherCAT task cycle to 5ms, 7ms, 9ms and so on, which may cause

non-integer multiple of 2.

4) Configuring sub-device bus cycle options

Under the Controller settings > Bus cycle > Bus cycle task of the controller device, the Bus cycle task list provides the

tasks defined in the task configuration of the current valid project (such as "MainTask", "EtherCAT Master”). Select one of

the tasks as the bus cycle of the current project, or select the option <unspecified>, which means that the shortest task

cycle time or the fastest execution cycle will be applied. You can switch to another settings, but be sure to note the

following.

Note: Before modifying the <unspecified> setting, be aware that it is a default action defined by the device description. By

default, the task can be defined with a shortest cycle time or a longest cycle time. Please check this carefully before

applying this setting.

Therefore, select the task corresponding to each module in EtherCAT I/O when using expansion modules and EtherCAT

modules (especially the EtherCAT_Master_SoftMotion module) to improve the stability of the system. The reference

program is shown in Figure 6-14.

AX series programmable controller software manual Controller Program Structure and Execution

-90-

Figure 6-14 EtherCAT bus cycle task setting

6.6 Operation of multiple subprograms

In practical projects, the program can usually be divided into many subprograms according to the control flow or the object

of the equipment. The designer can program each processing unit separately. As shown in Figure 6-15, the main program

is divided into multiple subprograms with different processes through the control flow. The main purpose of the division is

to make the main program clearer and facilitate future debugging.

Control flow 1

Control flow 2

Control flow n

Control flow 1

Control flow 2

Control flow n

Main Program

PLC_PRG

After program

spliting

Sub-program

PRG1

Sub-program

PRG2

Sub-program

PRGn

Figure 6-15 Split in multiple subprograms by process

The right part of Figure 6-15 displays the subprograms PRG1, PRG2…PRGn classified by the flow. The left part of the

figure displays the main program PLC _PRG. The PRG1...PRGn subprograms can be called separately in the main

program. There are two ways to run multiple subprograms. One is to add subprograms in the task configuration. The other

is to call subprograms from the main program, which is more common and flexible.

1) Add subprograms in task configuration

Users can add subprograms in the task configuration page to realize the operation of multiple programs. Click Add Call to

AX series programmable controller software manual Controller Program Structure and Execution

-91-

add subprograms in the order in which they are executed. As shown in Figure 6-16, after adding subprograms, the tasks

will be executed in the top-to-bottom order specified by the user, or you can edit the order manually by using the Move Up

and Move Down functions.

Figure 6-16 Add subprograms in a task

2) Call subprograms from main program PLC_PRG

PLC_PRG is the default main program of the system. In a sense, it can be understood as the battery of a car. In the

production of a car, each part is assembled, which is equivalent to the writing of subprograms. When the car is assembled,

it is necessary to check whether the car is usable. If you want to start the car, you must start the engine, lights and other

parts through the battery which is equivalent to the entry point for starting the car. By calling the program in this way, the

program becomes more operable and flexible. You can add judgment statements and use nesting in the program.

PLC_PRG is a special POU that runs by default with a coasting mode. This POU is called every control cycle by default

without any additional task configuration. The configuration of the POU can be found in the task configuration. It can be

used to call other subprograms and add necessary condition selection at the time of the call, or nest subprograms to make

program calling more flexible. To implement the call relationship in Figure 6-17, write the following code in the main

program PLC _PRG.

Figure 6-17 POU calling sequence

As shown in the Figure 6-17, the main program is PLC_PRG, which uses structured text programming language, and the

program content is POU_1(); POU_2();.

The main function of the above programs is to call and execute POU_1 and POU_2 subprograms respectively. And

POU_1 calls POU_3 and POU_4 respectively. The AX7x programmable controller actually executes the programs in the

following order:

a) AX7x programmable controller program executes POU_1 first.

b) Since POU_3 and POU_4 are called sequentially in POU_1, POU_3 is executed first.

c) Execute POU_4 to complete POU_1.

d) Finally execute POU_2 to complete a full task cycle.

Repeating the above steps a) to d) is the internal execution sequence of the AX7x series programmable controller.

AX series programmable controller software manual EtherCAT Bus Motion Control

-92-

 EtherCAT Bus Motion Control 7

7.1 EtherCAT operation principle

7.1.1 Protocol introduction

EtherCAT overcomes the inherent limitations of other Ethernet solutions. : On the one hand the Ethernet packet is no

longer received then interpreted and process data then copied at every device, but the EtherCAT slave devices read the

data addressed to them while the frame passes through the node. Similarly, input data is inserted while the telegram

passes through. In the whole process, the frames are only delayed by a few nanoseconds.

The frame send by the master is passed through to the next device until it reaches the end of the segment (or branch).

The last device detects an open port and therefore sends the frame back to the master. On the other hand, an EtherCAT

frame comprises the data of many devices both in sending and receiving direction within one Ethernet frame. The usable

data rate increases to over 90 %. The full-duplex features of 100 Mb/s TX are fully utilized, so that effective data rates of >

100 Mb/s (> 90 % of 2 x 100 Mb/s) can be achieved.

The EtherCAT master uses standard Ethernet Medium Access Controllers (MACs) without extra communication

processors. Thus an EtherCAT master can be implemented on any equipment controller that provides an Ethernet

interface, independently of the operating system or application environment. The EtherCAT slave uses an EtherCAT Slave

Controller (ESC) for processing the data on-the-fly. Thus the performance of the network is not determined by the

microcontroller performance of the slave but is handled complete in hardware. A process data interface (PDI) to the

slave‘s application offers a Dual-Port-RAM (DPRAM) for data exchange.

Precise synchronization is particularly important in a wide range of distribution processes that require simultaneous

actions, such as when several servo axes are performing simultaneous tasks. Precise calibration of distributed clocks is

the most effective solution for synchronization. In the communication system, the stepwise calibration clock has the

tolerance of error delay to a certain extent, compared with the fully synchronous communication.

7.1.2 Work counter WKC

The end of each EtherCAT message has a 16-bit working counter, WKC. WKC is a working counter used to record the

number of reads and writes to the EtherCAT slave device. The EtherCAT slave controller calculates WKC in the hardware.

The master receives the return data and checks the WKC in the sub-message. If WKC is not equal to the expected value,

the sub-message has not been processed correctly. When a sub-message passes through a certain slave node, WKC will

be increased by 1 if it is a single read or write operation. If it is a read and write operation, WKC will be increased by 1

upon read success, by 2 upon write success and by 3 upon complete. WKC is the accumulation of the processing results

of each slave. The description of WKC increment is shown in Table 7-1.

Table 7-1 WKC increment

Command Data type Increment

Read
Read failed –

Read succeeded +1

Write
Write failed –

Write succeeded +1

Read/write

Failed –

Read succeeded +1

Write succeeded +2

Read and write succeeded +3

AX series programmable controller software manual EtherCAT Bus Motion Control

-93-

7.1.3 Addressing mode

EtherCAT communication is realized by the master sending EtherCAT data frames to read and write the internal storage

area of the slave device. EtherCAT messages use multiple addressing modes to operate the ESC internal storage area for

multiple communication services. The addressing mode of EtherCAT is shown in Figure 7-1. An EtherCAT network

segment is equivalent to an Ethernet device. The master first uses the MAC address of the Ethernet data frame header to

address the network segment, and then uses the 32-bit address in the EtherCAT sub-message header to address the

device in the segment. There are two ways to achieve in-segment addressing: device addressing and logical addressing.

Device addressing performs read and write operations for a certain slave node. Logical addressing is oriented to process

data and can be multicast. The same sub-message can read and write multiple slave devices.

Ethernet data frame header

address

Segment addressing

Device addressing Logic addressing

Sequence addressing Setting addressing

Addressing by the

physical site where

the device connected

Addressing by site

number

Process data

addressing

EtherCAT sub-message header

address area

MAC address

Figure 7-1 Addressing mode of EtherCAT

7.1.3.1 Segment addressing

Depending on how the EtherCAT master and its segment are connected, the segment can be addressed in two ways.

 Direct connection mode

An EtherCAT segment is directly connected to the standard Ethernet port of the master device, as shown in Figure 7-2. In

this case, the master uses the broadcast MAC address and the EtherCAT data frame is shown in Figure 7-3.

Master

device

Slave

device

Slave

device

Slave

device

Slave

device

Slave

device

Slave

device

EtherCAT segment equals one Ethernet device

Figure 7-2 EtherCAT segment in direct connection mode

 Destination address:

FF FF FF FF FF FF

 Source address:

FF FF FF FF FF FF

6 bytes 6 bytes

Frame type

(0x88A4)

2 bytes

 EtherCAT message

header

2 bytes

 EtherCAT data

44-1498 bytes

 PCS

4 bytes

Figure 7-3 Addressing mode of EtherCAT in direct connection mode

AX series programmable controller software manual EtherCAT Bus Motion Control

-94-

 Open mode

EtherCAT segment is connected to a standard Ethernet switch, as shown in Figure 7-4. In this case, a segment needs a

MAC address and the address in the EtherCAT data frame sent by the master is the MAC address of the segment it

controls, as shown in Figure 7-5. The first slave device in the EtherCAT segment has an ISO/IEC 8802.3 MAC address,

which represents the entire segment. This slave is called a segment address slave, which can exchange the destination

address area and source address area in the Ethernet. If EtherCAT data frame is sent over UDP, the device will also

exchange the source and destination IP addresses and the source and destination UDP port numbers, making the

response frame fully complied with the UDP/IP protocol.

Switch

Slave

device

with

segment

address

Slave

device

Slave

device

Slave

device

Slave

device

Slave

device

EtherCAT segment equals one Ethernet device

Master

device

Common Ether

device Slave

device

with

segment

address

Slave

device

Slave

device

Slave

device

Slave

device

Slave

device

EtherCAT segment equals one Ethernet device

Master

device

Figure 7-4 EtherCAT segment in open mode

Destination address:

 Segment MAC address

 Source address:

Master MAC address

6 bytes 6 bytes

Frame type

(0x88A4)

2 bytes

 EtherCAT

message head

2 bytes

 EtherCAT data

44-1498 bytes

 PCS

4 bytes

Figure 7-5 Addressing mode of EtherCAT in open mode

7.1.3.2 Device addressing

During device addressing, the 32-bit address in the EtherCAT sub-message header is divided into a 16-bit slave device

address and a 16-bit slave device internal physical storage space address, as shown in Figure 7-6. The 16-bit slave

device address can address 65535 slave devices, and each device can have up to 64 local address spaces.

Only one unique slave device is addressed per message in the device addressing mode, but there are two different

mechanisms for addressing devices.

Command Index Address area Length R Statue bitC R M

8Bit 8Bit 32Bit 11Bit 2 1 1 1 16Bit

Sequence

addressing

Setting

addressing

Logic

addressing

Slave sequence

address

Memory offset

address

Slave setting

address

Memory offset

address

Logic address

Sequence

addressing

Setting

addressing

Logic

addressing

16Bit 16Bit

Figure 7-6 EtherCAT device addressing structure

AX series programmable controller software manual EtherCAT Bus Motion Control

-95-

 Sequential addressing

For sequential addressing, the address of a slave is determined by its connection location within the segment, with a

negative number indicating the location of each slave within the segment as determined by the wiring sequence. When

the sequential addressing sub-message passes through each slave device, its sequential address is increased by 1.

When the slave receives a message, the message with a sequential address of 0 is the message addressed to it. This

mechanism is also known as "automatic incremental addressing" because it updates the device address as the message

passes through.

In Figure 7-7, there are three slave devices in the segment that are sequentially addressed as 0, -1, -2, and so on. When

the master uses sequential addressing to access the slave, the address change of the sub-message is shown in Figure

7.8. The master station sends 3 sub-messages to address 3 slave nodes, where the addresses are 0, -1 and -2

respectively, and the data frame is 1 as shown in the figure. When the data frame reaches the slave ①, the slave ①

checks that the address in sub-message 1 is 0, thus knowing that sub-message 1 is the message addressed to itself. After

the data frame passes through the slave ①, all sequential addresses are increased by 1, called 1, 0 and -1, as shown in

the data frame 2 in Figure 7-8. When the data frame reaches the slave ②, the slave ② finds that the address in

sub-message 2 is 0, which is its own message. Similarly, subsequent slave nodes are addressed in this way. As shown in

Figure 7.7, in actual engineering applications, sequential addressing is mainly used in the startup phase, and the master

node configures a site address for each slave node. After that, the slave node can be addressed using a site address that

is independent of their physical location. The sequential addressing mechanism can be used to automatically address the

slave node, as shown in Figure 7-8.

DVI

IPC

0x0000(0) 0xFFFF(-1) 0xFFFE(-2)

Data frame

1

Data frame

2

Data frame

3

Figure 7-7 Sequentially addressed slave address

0

Sub-message 1 Sub-message 2

0xFFFF

(-1)

Sub-message 3

Data frame 1 … … … … … …
0xFFFE

(-2)
… …

Sequence address from which the master station sends a message, i.e. the address to reach the slave station ①.

1 0Data frame 2 … … … … … …
0xFFFF

(-1)
… …

Sequential address of the message after being processed by the slave ①, i.e. the address that reaches the slave ②

2 1… … … … … … 0 … …

Sequential address of the message after being processed by the slave ②, i.e. the address that reaches the slave ③

Data frame 3

Figure 7-8 Change of sub-message address during sequential addressing

 Setting addressing

When setting addressing, the slave node address is independent of its sequential order within the network segment. As

shown in Figure 7-9, the address can be configured by the master to the slave in the data link start-up phase, or loaded by

the configuration data of the slave in the power-on initialization phase, and then read by the master in the link start-up

phase using the sequential addressing mode to set the address of each slave node. Its message structure is shown in

Figure 7-10.

AX series programmable controller software manual EtherCAT Bus Motion Control

-96-

DVI

IPC

1000 1234 5678

Data frame

1

Data frame

2

Data frame

3

①

② ③

Figure 7-9 Slave address in setting addressing mode

1000

Sub-message 1 Sub-message 2

1234

Sub-message 3

Data

frame 1 … … … … … … 5678 … …

Figure 7-10 Message structure in setting addressing mode

 Logic addressing

For logical addressing, the slave address is not defined separately, but using a section of the 4GB logical address space

in the addressing section. The 32-bit address area within the message is used as the overall data logical address to

complete the logical addressing of the device. The logical addressing mode is implemented by the Fieldbus Memory

Management Unit (FMMU). The FMMU function is located inside each ESC and maps the local physical storage address

of the slave to the logical address of the segment. The schematic diagram is shown in Figure 7-11.

Ethernet header
Sub

header 1
PLC data

Sub

header 2
NC data

Sub

header n
CRCData n

Data n

PLC data

NC data

0

Sub-message 1 Sub-message 2 Sub-message n

Figure 7-11 FMMU operating Principle

When receiving an EtherCAT sub-message of data logic addressing, the slave device will check for an FMMU unit

address match. If the match exists, the slave device will insert the input type data into the corresponding position in the

EtherCAT sub-message data area, and extracts the output type data from the corresponding position in the EtherCAT

sub-message data area.

AX series programmable controller software manual EtherCAT Bus Motion Control

-97-

7.1.4 Distributed clocks

7.1.4.1 Concepts

In applications with spatially distributed processes requiring simultaneous actions, exact synchronization is particularly

important. For example, this is the case for applications in which multiple servo axes execute coordinated movements.

With this mechanism, the slave device clocks can be precisely adjusted to this reference clock. The first slave connected

to the master with distributed clocking functions acts as a reference clock to synchronize the slave clocks of the other

devices and the master. To achieve precise clock synchronization control, it is necessary to measure and calculate the

data transmission delay and local clock offset, and to compensate for the drift of the local clock. The following 6 concepts

are involved in the synchronization of the clock.

 System time

The system time is the system timing used by the distributed clock. It starts at 0:00 on January 1, 2001, and is expressed

in a 64-bit binary variable in nanoseconds (ns) and can be timed for up to 500 years. It can also be expressed as a 32-bit

binary variable with a maximum of 4.2s, which is usually used for communication and time stamping.

 Reference clock and slave clock

The EtherCAT protocol defines the first slave connected to the master with distributed clocking functions acts as a

reference clock, and the clocks of other slave nodes are called slave clocks. The reference clock is used to synchronize

the slave clocks and the master clock of other slave devices. The reference clock provides the EtherCAT system time.

 Master clock

The EtherCAT master station also has a timing function, which is called the master clock. The master clock can be

synchronized as a slave clock in a distributed clock system. In the initialization phase, the master can send the master

clock to the reference clock slaves in system time format, which enables the distribution clocks to be timed using system

time.

 Local clock, initial offset and clock drift

Each DC slave has a local clock, which runs independently and is timed using the local clock signal. When the system

starts, there is a certain difference between the local clock and the reference clock of each slave, which is called the initial

clock offset. During operation, due to the fact that the reference clock and the DC slave clock use their own clock sources,

their timing cycles drift to a certain extent, which will lead to the clock running out of sync and the local clock drifting.

Therefore, the initial clock offset and clock drift must be compensated.

 Local system time

The local clock of each DC slave generates a local system time after compensation and synchronization. The distributed

clock synchronization mechanism is to keep the local system time of each slave consistent. The reference clock is also

the local system clock of the corresponding slave.

 Transmission delay

There will be a certain delay when data frames are transmitted between slaves, which includes device internal and

physical connection delays. Therefore, when synchronizing slave clocks, the transmission delay between the reference

clock and multiple slave clocks should be considered.

7.1.4.2 Clock synchronization process

Clock synchronization consists of the following three steps:

a) Transmission delay measurement

When the distributed clock is initialized, the master will initialize the transmission delay for slave nodes in all directions,

calculate the deviation value between the slave clocks and the reference clock, and write it into the slave clock.

b) Reference clock offset compensation (system time)

AX series programmable controller software manual EtherCAT Bus Motion Control

-98-

The local clock of each slave will be compared with the system time, and then different comparison results will be written

into different slaves, so that all slaves will get the absolute system time.

c) Reference clock drift compensation

Clock drift compensation and local time are used to periodically compensate for local clock errors and fine-tuning. The

following figure illustrates two application cases of compensation calculation. Figure 7-12 shows a case where the system

time is less than the slave local clock. Figure 7-13 shows a case where the system time is greater than the slave local

clock.

 System time < local time

Target: Slave clock

copies system time

tsystem

System

time

Reference clock

Transmission

delay

Drift compensation

including system

time

Local

clock

Transmission

delay time

Offset

compensation

Drift

compensation

tlocal

Tx

Rx

Slave clock
X

Figure 7-12 Clock synchronization: system time < local time

 System time > local time

Target: Slave clock

copies system time

tsystem

System

time

Reference clock

Transmission

delay

Drift compensation

including system

time

Local

clock

Transmission

delay

compensation

Offset

compensation

Drift

compensation

tlocal

Tx

Rx

Slave clock
X

Figure 7-13 Clock synchronization: system time > local time

With EtherCAT, data exchange is completely hardware-based. Due to the logic ring structure of communication (with the

help of the physical layer of full-duplex fast Ethernet), the master clock can simply and accurately determine the delay

offset of slave clock propagation, and vice versa. The distributed clocks are adjusted based on this value, which indicates

that a very precise deterministic synchronization error time base (less than 1 microsecond) can be used across the

network. Its structure is shown in Figure 7-14.

AX series programmable controller software manual EtherCAT Bus Motion Control

-99-

Figure 7-14 Clock synchronization principle

For example, there is a difference of 300 nodes between the two devices, and the cable length is 120 meters. Use an

oscilloscope to capture the communication signal, and the result is shown in Figure 7-15.

Figure 7-15 Performance test of clock synchronization

This function is very important for motion control. In such applications, velocity is typically derived from the measured

position. Even very small jitter in the position measurement timing can translate to larger inaccuracies in the calculated

velocity, especially relative to short cycle times. In EtherCAT, the introduction of time-stamped data types as a logical

extension allows high-resolution system times to be added to the measured value, which is made possible by the huge

bandwidth that Ethernet provides.

AX series programmable controller software manual EtherCAT Bus Motion Control

-100-

7.1.5 EtherCAT cable redundancy

Increasing demands in terms of system availability are catered for with optional cable redundancy that enables devices to

be exchanged without having to shut down the network. Adding redundancy is very inexpensive: the only additional

hardware is another standard Ethernet port (no special card or interface) in the master device and the single cable that

turns the line topology into the ring. Switchover in case of device or cable failure only takes one cycle, so even demanding

motion control applications survive a cable failure without problems.

EtherCAT also supports redundant masters with hot standby functionality. Since the EtherCAT Slave Controllers

immediately return the frame automatically if an interruption is encountered, failure of a device does not necessarily lead

to the complete network being shut down. For example, the standard EtherCAT topology is shown in Figure 7-16 a). If

there is a network interruption between Slave2 and SlaveN-2 in this topology (the red part in the figure), all slave

communication after Slave N-2 is interrupted accordingly. This is also the disadvantage of the standard topology.

a) Standard EtherCAT topology b) EtherCAT redundant topology

Figure 7-16 EtherCAT redundancy

Figure 7-16 b) shows the topology structure of the EtherCAT redundancy mode. Only two standard network ports are

needed for the master to realize the topology. With these two ports, all slave nodes can form a loop. Even if the network is

interrupted while in use, such as the disconnected red part in Figure 7-16, the master node will detect the error

immediately and automatically divide the communication into two channels, and all the slave nodes can continue to

communicate to ensure the stable operation of the system.

7.2 EtherCAT communication mode

In actual automation control systems, there are usually two forms of data exchange between applications: time-critical and

time-non-critical. Time critical indicates that a specific action must be completed within a certain time window. If the

communication cannot be completed within the required time window, it may cause control failure. Time-critical data is

usually sent periodically, which is called periodic process data communication. Non-time-critical data can be sent out of

cycle, and non-periodical mailbox data communication is used in EtherCAT.

7.2.1 Periodic process data communication

The master node can use logical read, write or read and write commands to control multiple slaves at the same time. In

the periodic data communication mode, the master and the slave have multiple synchronous operation modes.

1) Slave device synchronization mode

 Free running

In free-run mode, the local control cycle is generated by a local timer interrupt. The cycle time can be set by the master,

which is an optional feature of the slave. The local cycle in free-running mode is shown in Figure 7-17. In the figure, T1 is

the time for the local microcontroller to copy data from the EtherCAT slave controller and calculate the output data; T2 is

the output hardware delay, and T3 is the input latch offset time. These parameters reflect the time response performance

of the slave.

AX series programmable controller software manual EtherCAT Bus Motion Control

-101-

Cycle time

Local timer event Local timer event

Min. cycle time

T1 T2 T3

Copy output

Output valid Input lock

Obtain and copy input

Figure 7-17 Local cycle in free-running mode

 Synchronization to data or output events

The local cycle is triggered on the occurrence of a data input or output event, as shown in Figure 7-18. The master can

write the sending cycle of the process data frame into the slave. The slave will check if this cycle time is supported or if the

cycle time is optimized locally. The slave can choose to support this feature. It is usually synchronized to the data output

event. If the slave only has input data, the data is synchronized to the input event.

Cycle time

Data input/output event

Min. cycle time

T1 T2 T3

Copy output

Output valid Input lock

Obtain and copy input

Data input/output event

Data

frame

Data

frame

Figure 7-18 Local cycle of synchronization to data input or output events

 Synchronization to distributed clock synchronization event

The local cycle is triggered by the SYNC event, as shown in Figure 7-19. The master must complete the transmission of

the data frame before the SYNC event. For this reason, the master clock must also be synchronized with the reference

clock.

Cycle time

SYNC event

Min. cycle time

T1 T2 T3

Copy output

Input lock

Obtain and copy input

SYNC event

Data

frame

Data

frame

Output valid

Figure 7-19 Local cycle of synchronization to SYNC event

AX series programmable controller software manual EtherCAT Bus Motion Control

-102-

To further optimize slave station synchronization performance, the master should copy the output information from the

received process data frame when a data transmission and reception event occurs. After the SYNC signal arrives,

continue the local operation. As shown in Figure 7-20, the data frame must arrive T1 time earlier than the SYNC signal.

The slave has completed data exchange and control calculations before the SYNC event and can perform the output

operation immediately after receiving the SYNC signal, further improving synchronization performance.

Cycle time

Data input/output event

Min. cycle time

T1 T2 T3

Output valid Input lock

Data input/output event

Data

frame
Data

frame

SYNC event SYNC event

Figure 7-20 Local cycle of the optimized synchronization to SYNC event

2) Master device synchronization mode

There are two synchronization modes for the master.

 Cyclic mode

In cyclic mode, the master periodically sends process data frames. The master’s cycle is usually controlled by a local timer.

The slave node can run in free-running mode or in synchronization to received data event mode. For the slave in

synchronization mode, the master should check that the cycle time of the corresponding process data frame is greater

than the minimum cycle time supported by the slave.

The master can send a variety of periodic process data frames at different cycle times to get the most optimized

bandwidth. For example, a shorter cycle is used to send motion control data and a longer cycle is used to send I/O data.

 DC mode

The master runs in DC mode similarly to cyclic mode, except that the local cycle of the master should be synchronized

with the reference clock. The master's local timer should be adjusted based on the ARMW message that publishes the

reference clock. After the ARMW message used to dynamically compensate clock drift is returned to the master, the

master clock can be adjusted based on the read back reference clock time to be roughly synchronized with the reference

clock time.

In DC mode, all DC-enabled slaves should be synchronized to the DC system time. The master should also synchronize

the other communication cycles with the DC reference clock time. Figure 7-21 shows how the local cycle is synchronized

with the DC reference clock.

AX series programmable controller software manual EtherCAT Bus Motion Control

-103-

Local timer event

Application Application

Local timer event

Data

frame
D U

Master additional

offset

Pre-calculated fixed offset

Data

frame
D U

Master frame

DC Base

Master

Slave

Transmission

delay

SYNC offset

S0 S0

SYNC SYNC

Figure 7-21 Master DC mode

The master local run is started by a local timer. The local timer should have an advance over the DC reference clock

timing, which is the sum of the following times.

 Control program execution time

 Data frame transmission time

 Data frame transmission delay (D)

 Additional offset (U) (Related to the jitter value of the delay time of each slave and the jitter value of the control

program execution time, used for the adjustment of the master cycle)

7.2.2 Non-periodic mailbox data communication

The non-periodical data communication in the EtherCAT protocol is called mailbox data communication, which can be

carried out in both directions, i.e. from the master to the slave and from the slave to the master. It supports full duplex,

two-way independent communication and multi-user protocols. The slave-to-slave communication is managed by the

master as a router. The mailbox communication data header includes an address field that enables the master to resend

mailbox data. Mailbox data communication is a standard way of realizing parameter exchange, and is used if periodic

process data communication or other non-periodic services need to be configured.

The mailbox data message structure is shown in Figure 7-22. Usually the mailbox communication value corresponds to a

slave station, so the device addressing mode is used in the message. The data elements in its data header are listed in

Table 7-2.

Sub header Data WKC

Mailbox protocol data

Mailbox data

header
Command Command-related data

Length Channel Priority

16 Bit

0 16
Address

16 Bit

32

6 Bit

38
Type

40

4 Bit2 Bit

44
Counter

4 Bit

Figure 7-22 Mailbox data unit structure

AX series programmable controller software manual EtherCAT Bus Motion Control

-104-

Table 7-2 Mailbox data header

Data element Bit Description

Length 16 bits Length of the followed mailbox service data

Address 16 bits

Slave address of data source for master-to-slave

communication

Slave address of data destination for master-to-slave

communication

Channel 6 bits Reserved

Priority 2 bits Reserved

Type 4 bits

Mailbox type, i.e. type of subsequent protocol.

0: Mailbox communication error

2: EoE (Ethernet over EtherCAT)

3: CoE (CANopen over EtherCAT)

4: FoE (File Access over EtherCAT)

5: SoE (Sercos over EtherCAT)

15: VoE (Vendor Specific Profile over EtherCAT)

Counter (Ctr) 4 bits

Sequence number used for repeated detection, increasing by 1

for each new mailbox service (Only 1 to 7 is used for

compatibility with older versions)

 Master-to-slave communication – write mailbox command

The master sends the write data area command to send mailbox data to the slave. The master will check the work counter

WKC in the slave’s answer message of mailbox command. If the work counter is 1, the write command is successful.

Conversely, if the work counter is not increased, which is usually because the slave did not finish reading the previous

command, or did not respond within a limited time, the master must resend the write mailbox data command.

 Master-to-slave communication – read mailbox command

To be sent from the slave to the master, the data must first be written to the input mailbox cache and then read by the

master. If there is valid data waiting to be sent from the slave ESC input mailbox data area, the master will send the

appropriate read command to read the slave data as soon as possible. There are two ways for the master to determine

whether the slave has filled the mailbox data into the input data area. One is to use FMMU to periodically read a certain

flag bit. Logical addressing can be used to read the flags of multiple slave s, but the disadvantage is that each slave

requires an FMMU unit. The other way is to input a simple rotation training ESC into the input area of the mailbox. An

increase of 1 in the work counter of the read command indicates that the slave has populated the input data area with new

data.

7.3 EtherCAT state machine

EtherCAT State Machine (ESM) coordinates the state of the master and slave applications at initialization and runtime.

The EtherCAT device must support four states and an optional state.

 Init: initialization, abbreviated as I.

 -Operational: abbreviated as P.

 Safe-Operational: abbreviated as S.

 Operational: abbreviated as O.

 -Strap: (Optional) abbreviated as B.

The conversion relationship between the above states is shown in Figure 7-23. When the state is converted from the

initialization state to the operational state, the conversion must be done in the order of "Init > -Operational >

Safe-Operational > Operational > -Strap". The leapfrog conversion is only available when returning from the

Operational state. The Boot-Strap state is optional and is only allowed to convert to and from the Init state. All state

AX series programmable controller software manual EtherCAT Bus Motion Control

-105-

changes are initiated by the master node, which sends a state control command to the slave to request a new state, and

the slave responds to this command by performing the requested state conversion and writing the result to the slave state

indicator variable. If the requested state conversion fails, the slave will give an error flag. Table 7-3 shows the summary of

state conversions.

Initialize

Pre-Operational

(OI) (OP)

Safe-OperationalSafe-Operational

(PS) (SP)

(SO) (OS)

Operational

BootStrap

(IP) (PI) (IB) (BI)(SI)

Figure 7-23 EtherCAT state conversion

 Init

The initialization state defines the initial communication relationship between the master and the slave at the application

layer. At this time, the master and the slave cannot communicate directly at the application layer, and the master uses the

initialization state to initialize some configuration registers of the ESC. If the master supports mailbox communication,

configure the mailbox communication parameters.

 -Operational

-Operational state, mailbox communication is activated. The master and slave can use mailbox communication to

exchange application-related initialization operations and parameters. Process data communication is not allowed in this

state.

 Safe-Operational

In Safe-Operational state, the slave application reads the input data, but does not generate an output signal. The device

has no output and is in a "safe state". In this case, mailbox communication is still available.

 Operational

In Operational state, the slave application reads data, the master application sends out output data, and the slave device

generates an output signal. In this case, mailbox communication is still available.

 Boot-Strap

The function of the boot strap state is to download the device firmware program. The master can download a new

firmware program to the slave using FoE protocol mailbox communication.

Table 7-3 State conversion of EtherCAT state machine

State and state

conversion
Description

Init
There is no communication at the application layer, and the master can

only read and write ESC registers.

Init to Pre-OP

(IP)

The master configures the slave site address register.

Configure mailbox channel parameters if mailbox communication is

supported.

Configure DC related registers if distributed clocks are supported.

The master writes state control register to request "Pre-Op" state.

Pre-Operational Mailbox data communication at application layer

AX series programmable controller software manual EtherCAT Bus Motion Control

-106-

State and state

conversion
Description

Pre-Op to Safe-Op (PS)

The master uses mailboxes to initialize process data mapping.

The master configures the SM channel used for data communication.

The master configures FMMU.

The master writes state control register to request "Safe-Op" state.

Safe-Operational
The master sends valid output data.

The master writes state control register to request "Op" state.

Operational
All inputs and outputs are valid.

Mailbox communication is still available.

7.4 EtherCAT servo drive controller application protocol

IEC 61800 standard series is a general specification for variable speed electronic power drive systems. IEC 61800-7

defines the standard of communication interface between control system and power drive system, including network

communication technology and application profile, as shown in Figure 7-24. EtherCAT, as a network communication

technology, supports the profile CiA 402 in the CANopen protocol and the application layer of the SERCOS protocol,

which are called CoE and SoE respectively.

General Power Drive System Interface Specification

IEC 61800-7 --Power drive system general interface and application profile

IEC 61800-7-1 – Define interface

Appendix A

Profile type 1 mapping

(CiA 402)

Appendix B

Profile type 2 mapping

(CIP Motion)

Appendix C

Profile type 3 mapping

(PROFIdrive)

Appendix D

Profile type 4 mapping

(SERCOS)

IEC 61800-7-200 –Apply profile specification

IEC 61800-7-201

Profile type 1

(CiA 402)

IEC 61800-7-202

Profile type 2

(CIP Motion)

IEC 61800-7-203

Profile type 3

(PROFIdrive)

IEC 61800-7-204

Profile type 4

(SERCOS)

IEC 61800-7-300 –Map profiles to the communication network technology

IEC 61800-7-302

Map profile type 2 to:

 DeviceNet

 ControlNet

 EtherNet/IP

IEC 61800-7-301

Map profile type 1 to:

 CANopen

 EtherCAT

 ETHERNET

 PowerLink

IEC 61800-7-303

Map profile type 3 to:

 PROFIBUS

 PROFINET

IEC 61800-7-304

Map profile type 4 to:

 SERCOSⅠ+Ⅱ

 SERCOSⅢ
 EtherCAT

Figure 7-24 IEC 61800-7 architecture

7.4.1 EtherCAT-based CAN application protocol (CoE)

CANopen device and application profiles are available for a wide range of device classes and applications, ranging from

I/O components, drives, encoders, proportional valves and hydraulic controllers to application profiles for plastic or textile

machinery, for example. EtherCAT can provide the same communication mechanisms as the familiar CANopen

mechanisms: object dictionary, PDO (process data objects) and SDO (service data objects) – even the network

management is comparable. EtherCAT can thus be implemented with minimum effort on devices equipped with CANopen.

Large parts of the CANopen firmware can be reused. Objects can optionally be expanded in order to account for the larger

bandwidth offered by EtherCAT.

AX series programmable controller software manual EtherCAT Bus Motion Control

-107-

The EtherCAT protocol supports the CANopen protocol at the application level and is supplemented by the following main

features:

 Network initialization by accessing the CANopen object dictionary and objects using mailbox communication

 Network management by using CANopen application objects and optional time-driven PDO messages.

 Mapping process data, cyclic transmission command data and state data by object dictionary.

Figure 7-25 shows the CoE device structure whose communication modes mainly include periodic process data

communication and non-periodic data communication. The following section will introduce the differences between both

modes in practical applications.

EtherCAT application

EtherCAT device

Object dictionary Process data

SDO PDO mapping

Mailbox Process data

CoE CoE

EtherCAT slave device

Ethernet physical layer

Figure 7-25 CoE device structure

7.4.1.1 CoE object dictionary

The CoE protocol fully complies with the CANopen protocol and has the same object dictionary definition as shown in

Table 7-4.

Table 7-4 CoE object dictionary definition

Index number range Description

0x0000–0x0FFF Data type description

0x1000–0x1FFF

Communication objects include:

device type, identifier, PDO mapping, CANopen-compatible data object

for CANopen. EtherCAT extension data object is reserved in EtherCAT.

0x2000–0x5FFF Manufacturer definition object

0x6000–0x9FFF Profile definition data object

0xA000–0xFFFF Reserved

Table 7-5 lists the CoE communication data objects, which extend the relevant communication objects 0x1C00–0x1C4F

for EtherCAT communication to set the type of storage synchronization manager, communication parameters and PDO

data allocation.

AX series programmable controller software manual EtherCAT Bus Motion Control

-108-

Table 7-5 CoE communication data object

Index Description

0x1000 Device type

0x1001 Error register

0x1008 Vendor device name

0x1009 Manufacturer hardware version

0x100A Manufacturer software version

0x1018 Device identifier

0x1600–0x17FF RxPDO mapping

0x1A00–0x1BFF TxPDO mapping

0x1C00 Sync manager communication type

0x0x1C10–0x1C2F Process data communication sync manager PDO assignment

0x0x1C30–0x1C4F Synchronization management parameters

7.4.1.2 CoE periodic process data communication (PDO)

In periodic data communication, the process data can contain multiple PDO mapping data objects. The data objects

0x1C10 to 0x1C2F used by the CoE protocol define the corresponding PDO mapping channels. Table 7-6 shows the

specific structure of the communication data in the EtherCAT protocol.

Table 7-6 CoE communication data object

Index Object type Description Type

0x1C10 Array SM0 PDO assignment Unsigned integer 16-bit

0x1C11 Array SM1 PDO assignment Unsigned integer 16-bit

0x1C12 Array SM2 PDO assignment Unsigned integer 16-bit

0x1C13 Array SM3 PDO assignment Unsigned integer 16-bit

… … … …… …… …… ……

0x1C2F Array SM31 PDO assignment Unsigned integer 16-bit

The following uses the allocation for SM2 PDO (0x1C12) as an example and Table 7-7 lists its value. If two data are

mapped in PDO0, the first communication variable will be the control word with the corresponding mapped index and

sub-index address 0x6040:00, and the second communication variable is the target position value with the corresponding

mapped index and sub-index address 0x607A:00.

 Table 7-7 Example of SM2 channel PDO assign object data 0x1C12

0X1C12

Sub-index

Numeric

value

PDO data object mapping

Sub-index Numeric value Bytes Description

0 3 1
Number of PDO

mapping objects

1
PDO0

0x1600

0 2 1
Number of data mapping

data objects

1 0x6040: 00 2 Control word

2 0x607A: 00 4 Target position

AX series programmable controller software manual EtherCAT Bus Motion Control

-109-

0X1C12

Sub-index

Numeric

value

PDO data object mapping

Sub-index Numeric value Bytes Description

1
PDO1

0x1601

0 2 1
Number of data mapping

data objects

1 0x6071: 00 2 Target torque

2 0x6087: 00 4 Target ramp

1
PDO2

0x1602

0 2 1
Number of data mapping

data objects

1 0x6073: 00 2 Max. current

2 0x6075: 00 4 Motor rated current

There are several PDO mapping modes:

(1) Simple devices do not require mapping protocols

 Use simple process data

 Read in the EEPROM of the slave

(2) Readable PDO mapping

 Fix process data mapping

 Read with SDO communication

(3) Selectable PDO mapping

 Multiple fixed PDO groups are selected by object 0x1C1X

 Read through SDO communication

(4) Variable PDO mapping

 Configure through CoE communication

7.4.1.3 CoE non-periodic process data communication (SDO)

The EtherCAT master enables non-periodic data communication via reading and writing mailbox data SM channels. The

CoE protocol mailbox data structure is shown in Figure 7-26.

8 bytes

Mailbox data header

type=3(CoE)

Number Reserved Type

CoE command Command-related data

2 bytes 1478 bytes at most

9 bit 3 bit 4 bit

Figure 7-26 CoE data header

AX series programmable controller software manual EtherCAT Bus Motion Control

-110-

The numbered part in Figure 7-26 is explained in detail in Table 7-8.

Table 7-8 CoE command definition

CoE command field Description

No. Number when PDO is sent

Type

Message type:

0: Reserved

1: Emergency information

2: SDO request

3: SDO response

4: TxPDO

5: RxPDO

6: Remote TxPDO send request

7: Remote RxPDO send request

8: SDO information

9–15: Reserved

 SDO service

CoE communication service types 2 and 3 are SDO communication services, and the SDO data structure is shown in

Figure 7-27.

6 bytes

Mailbox data header

type=3(CoE)

SDO control Index Optional data

CoE

command
Command-related data

2 bytes 1478 bytes at most

8 bit 16 bit 8 bit

Sub-index data

32 bit 1-1470 bit

Standard CANopen data frame

Type=2 or 3

Figure 7-27 SDO data frame format

SDO usually has three transmission modes. Table 7-9 shows the specific content of the SDO data frame. Its structure is

shown in Figure 7-28:

Fast transmission service: As with the standard CANopen protocol, only 8 bytes are used and up to 4 bytes of valid data

can be transmitted.

Regular transmission service: More than 8 bytes can be used to transmit more than 4 bytes of valid data. The maximum

valid data that can be transmitted depends on the storage area capacity managed by the mailbox SM.

Segmented transmission service: Use this service when the capacity of the mailbox is exceeded.

Table 7-9 CoE data frame content

SDO control Standard CANopen SDO service

Index Device object index

Sub-index Sub-index

Data Data in SDO

Data (Optional)
There are four bytes of optional data that can be added to the data

frame.

AX series programmable controller software manual EtherCAT Bus Motion Control

-111-

Mailbox storage capacity

Fast transmission

Mailbox data header

CoE

Data < 4 bytes

Regular tranmission

Mailbox data header

CoE

4 bytes < Data < Mailbox

size

Segmented transmission

Mailbox data header

CoE

Data > Mailbox size

Mailbox data header

CoE

Mailbox data header

CoE

Mailbox data header

CoE

Figure 7-28 SDO transmission type

If the data to be transmitted is larger than 4 bytes, the regular transmission service is used. In regular transmission, the 4

data bytes in the fast transmission mode will be used to indicate the full size of the data to be transmitted. The valid data is

transmitted in the extended data section. The maximum size of the valid data is the mailbox capacity minus 16.

7.4.2 Servo drive profile according to IEC 61800-7-204 (SERCOS)

SERCOS is known as a real-time communication interface, especially for motion control applications. The SERCOS

profile for servo drives is included in the international standard IEC61800-7-204. The mapping of this profile to EtherCAT

is defined in section 304 of the standard. The service channel, including access to all drive-internal parameters and

functions, is based on the EtherCAT mailbox. Here too, the focus is on compatibility with the existing protocol (access to

value, attribute, name, units of the IDNs) and expandability with regard to data length limitation. The process data, with

SERCOS in the form of AT and MDT data, are transferred using EtherCAT device protocol mechanisms. The mapping is

similar to the SERCOS mapping. The EtherCAT slave state machine can also be mapped easily to the phases of the

SERCOS protocol.

7.4.2.1 SoE state machine

A comparison between the communication phase of the SERCOS protocol and the EtherCAT state machine is shown in

the Figure 7-29. The SoE state machine is featured as follows:

1) SERCOS protocol communication phase 0 and 1 are overwritten by EtherCAT initialization state.

2) Communication phase 2 corresponds to the operational state, allowing the use of mailbox communication to

implement the service channel and operate IDN parameters.

3) Communication phase 3 corresponds to the safe operational state and starts transmitting periodic data, where only

input data is valid and output data is ignored, implementing clock synchronization.

4) Communication phase 4 corresponds to the operational phase, where all inputs and outputs are valid.

5) Phase switching process commands S-0-0127 (communication phase 3 switchover check) and S-0-0128

(communication phase 4 switchover check) that do not use the SERCOS protocol are replaced by PS and SO

state conversion respectively.

6) The SERCOS protocol only allows switching down from the advanced communication phase to communication

phase 0, whereas EtherCAT allows any state switching down (as shown in a) in Figure 7-29. For example,

switching from the operational state to the safe operational state or from the safe operational state to the

pre-operational state. The SoE should also support this switchover as shown in b) in Figure 7-29. If the slave does

not support this switchover, set the error bit in the EtherCAT AL state register.

AX series programmable controller software manual EtherCAT Bus Motion Control

-112-

Init

EtherCAT

Pre-operational

Safe-operational

Operational

(IP) (PI)

(OI)

(OP)

(PS) (SP)

(SO) (OS)

(SI)

Communication phase 1

IEC 61784

CPF 16

Communication phase

2

Communication phase 3

(with input)

Communication phase 4

(S-0-0127)

(S-0-0128)

 a) EtherCAT state machine b) SERCOS state machine

Figure 7-29 SoE state machine

7.4.2.2 IDN inheritance

The SoE protocol inherits the DIN parameter definition of the SERCOS protocol. Each IDN parameter has a unique 16-bit

IDN, which corresponds to a unique data block that holds all information about the parameter. The data block consists of 7

elements, as listed in Table 7-10. The IDN parameters are divided into standard data and product data, and each part

consists of eight parameter groups with different IDN, as listed in Table 7-11.

Table 7-10 IDN data block structure

No. Name

Element 1 IDN

Element 2 Name

Element 3 Attribute

Element 4 Unit

Element 5 Minimum allowable value

Element 6 Maximum allowable value

Element 7 Data value

Table 7-11 IDN number definition

Bit 15 14-12 11-0

Meaning Classification Parameter group Parameter number

Value
0: Standard data (S)

1: Product data (P)
0–7: 8 parameter groups 0000-4095

When using EtherCAT as a communication network, some IDNs in the SERCOS protocol for communication interface

control have been deleted, as listed in Table 7-12. And some IDN has been modified, as listed in

Table 7-13.

Table 7-12 Deleted IDN

IDN IDN description

S-0-0003 Minimum start time of AT sending

S-0-0004 Time between sending and receiving state switching

S-0-0005 Minimum feedback sampling lead time

AX series programmable controller software manual EtherCAT Bus Motion Control

-113-

IDN IDN description

S-0-0009 Start address in the master data message

S-0-0010 Master data message length

S-0-0088 Recovery time required for receiving MSTs after receiving MDTs

S-0-0090 Command processing time

S-0-0127 Communications phase 3 switchover check

S-0-0128 Communications phase 4 switchover check

Table 7-13 Modified IDN

IDN
Original

description
Updated description

S-0-0006
Start time of AT

sending

Time offset in which an application writes AT data to ESC

memory after a synchronization signal within the slave.

S-0-0014
Communication

interface state
Map slave DL state and AL state code.

S-0-0028
MST error

technology
Map the slave RX error counter to the loss counter.

S-0-0089
Start time of MDT

sending

Time offset of obtaining MDT data from ESC memory after a

synchronization signal within the slave.

7.4.2.3 SoE periodic process data

Output process data (MDT data content) and input process data (AT data content) are configured by S-0-0015, S-0-0016

and S-0-0024. The process data only includes periodic process data, but not service channel data. The output process

data includes servo control words and command data, while the input process includes status words and feedback data.

S-0-0015 sets the type of periodic process data, as listed in Table 7-14, and the definition of parameters S-0-0016 and

S-0-0024 are listed in Table 7-15. The master writes these three parameters via mailbox communication during the

Pre-Operational phase to configure the contents of the periodic process data.

Table 7-14 Definition of parameter S-0-0015

S-0-0015 Command data Feedback data

0: Standard type 0 None No feedback data

1: Standard type 1 Torque command S-0-0080 (2 bytes) No feedback data

2: Standard type 2 Speed command S-0-0036 (4 bytes) Speed feedback S-0-0053 (4 bytes)

3: Standard type 3 Speed command S-0-0036 (4 bytes)
Position feedback S-0-0051 (4 bytes)

Speed feedback S-0-0053 (4 bytes) 4: Standard type 4
Position command S-0-0047 (4

bytes)

5: Standard type 5

Position command S-0-0047 (4

bytes)

Speed command S-0-0036 (4 bytes)

Position feedback S-0-0051 (4 bytes)

Or speed feedback S-0-0053 (4

bytes) +

Position feedback S-0-0051 (4 bytes)

6: Standard type 6 Speed command S-0-0036 (4 bytes) No feedback data

7: Custom S-0-0024 configuration S-0-0016 configuration

AX series programmable controller software manual EtherCAT Bus Motion Control

-114-

Table 7-15 Definition of parameters S-0-0016 and S-0-0016

Data word S-0-0024 definition S-0-0016 definition

0
Maximum length of output data

(Word)
Maximum length of input data (Word)

1 Actual length of output data (Word) Actual length of input data (Word)

2 First IDN of command data mapping First IDN of feedback data mapping

3
Second IDN of command data

mapping

Second IDN of feedback data

mapping

… … … … …

7.4.2.4 SoE non-periodic service channels

The EtherCAT SoE Service Channel (SSC) is done by the EtherCAT mailbox communication function, which is used for

non-periodic data exchange, such as reading and writing IDNs and their elements. The SoE data header format is shown

in Figure 7-30.

6 bytes

Mailbox data header

type=5(SoE)

Command
Subsequent

data

Operation

element ID

SoE command
Command-related

data

4 bytes 1476 bytes at most

3 bit 1 bit 1 bit

Error Address

3 bit 16 bit8 bit

IDN

Figure 7-30 SoE data header format

Table 7-16 SoE data command description

Data area Description

Command

Command type:

0x01: Read request

0x02: Read response

0x03: Write request

0x04: Write response

0x05: bulletin

0x06: Slave information

0x07: Reserved

Subsequent data

Subsequent data signal:

0x00: No subsequent data frame

0x01: Transmission incomplete, with subsequent data frame

Error

Error signal:

0x00: No error

0x01: Error occurred, 2-byte error code in data area

Address Specific address of the slave device

Operation element

identification

Element selection for single element operation, defined by bit, with each bit

corresponding to one element.

Number of elements for addressing constructs

IDN IDN number of the parameter, or the remaining segments during the segment

AX series programmable controller software manual EtherCAT Bus Motion Control

-115-

Data area Description

operation

Commonly used SSC operations include SSC read operations, SSC write operations, and process commands.

 SSC read operation: The master initiates the SSC read operation and writes the SSC request to the slave. After

receiving the read operation request, the slave responds with the requested IDN number and data value. The master

can read multiple elements at the same time, so the slave should answer multiple elements. If the slave only

supports single element operation, it should respond with the first element requested.

 SSC write operation: This operation is used to download data from the master to the slave, which should answer with

the result of the write operation. Segment operation consists of one or more segmented write operations and an SSC

write response service.

 SSC process command: A process command is a special non-periodic data. Each process command has a unique

IDN and specified data elements, which are used to start certain specific functions or processes of the servo device.

It usually takes a while to execute these functions or processes. The process command only triggers the start of the

process, so after that, the service channel it occupies will become immediately available for the transfer of other

non-periodic data or process commands. There is no need to wait until the triggered functions or processes to

complete their execution.

AX series programmable controller software manual Application Programming

-116-

 Application Programming 8

8.1 Single axis control

8.1.1 Single axis control programming description

The motion control of the AX7x series controller with the servo axis (such as DA200) is implemented based on the

EtherCAT bus network. Each EtherCAT bus cycle will perform a calculation and issue a control command to control the

servo. Different from the previous pulse control mode, EtherCAT bus is entirely based on the software. Pay attention to the

following points when applying:

 MC-related POUs should be configured to execute under the EtherCAT task. Most MC function blocks cannot run

normally when placed in the POU of the low-priority Main tasks.

 The PDO configuration table needs to be configured with relevant data objects. Otherwise the servo will not be able

to run due to the missing communication data object configuration. No error alarm will be generated for this case,

making it more difficult to troubleshoot.

 The controller can set the parameters of the servo by configuring SDO.

 MC function block instance can only be used for a unique servo axis control. Error occurs if it is used for multiple

servo axis controls.

 MC function block must be used to monitor the running servo axis to avoid error caused by program logic jump

without MC function block monitoring. Such error is usually difficult to detect.

 Pay attention to the safe handling of the debugging, and ensure that the signal configuration is consistent with the

practical application. If the servo system uses incremental encoder, zeroing is required prior to normal operation. For

movements within a limited range (e.g. a screw), limit and safety signals should be set.

8.1.2 MC function blocks commonly used for single-axis control

MC function block (FB) is also known as MC command. In fact, the object instance of MC function block is used in the

user program, and the servo axis is controlled by MC object instance, for example:

MC_Power1: MC_Power;//Statement instance MC_Power1

MC_Power1 (Axis=Axis1,)

Single-axis control is generally used for positioning control, that is, the servo motor drives the external mechanism to

move to the specified position. Sometimes the servo is required to run at a specified speed or torque. In single-axis control,

the following MC function blocks are commonly used:

Table 8-1 MC function blocks commonly used for single-axis control

Control operation Required MC command Description

Enable servo MC_Power
Run this command to enable the servo axis to

perform subsequent running control.

Absolute positioning MC_MoveAbsolute
Command the servo to run to a specified

coordinate point.

Relative positioning MC_MoveRelative
Runs the specified distance with the current

location as a reference.

Servo jog operation MC_Jog

The jog operation of the servo motor is often

used for low-speed test runs to inspect

equipment or adjust the position of the servo

motor.

AX series programmable controller software manual Application Programming

-117-

Control operation Required MC command Description

Relative superposition

positioning
MC_MoveAdditive

Based on the current running command of the

servo, run the specified distance relatively.

Speed control MC_MoveVelocity Command the servo runs at the specified speed.

Servo suspend MC_Halt

Command the servo to suspend operation. If

MC_Movexxx is triggered again, the servo can

run again.

Emergency stop MC_Stop

Command the servo to stop. The servo can run

again only after the stop command is reset and

MC_Movexxx is triggered.

Alarm reset MC_Reset
When the servo stops with an alarm, this

command is used to reset the servo.

Servo homing MC_Home

Command the servo to start homing operation.

Both the home signal of the application system

and the limit signals on both sides are connected

to the DI port of the servo.

Controller homing MC_Homing

Command the control system to start homing

operation. Both the home signal of the application

system and the limit signals on both sides are

connected to the DI port of the controller.

8.2 Cam synchronization control

Electronic cam (abbreviation ECAM) utilizes the constructed cam curves to simulate the mechanical cam to meet the

relative motion software system between main shaft and camshaft system the same to mechanical cam system.

Electronic cams can be applied to various fields, such as automobile manufacturing, metallurgy, machining, textiles,

printing, and food packaging. The electronic cam curve is a function curve with the main shaft pulse (active shaft) input as

X and the corresponding output of the servo motor (camshaft) as Y=F(X).

Figure 8-1 Electronic cam diagram

The AX series programmable controller electronic cam function has the following features.

 CAM curves are easy to draw: Cams can be described by cam chart, CAM curves or array. It supports multiple cam

chart selection and dynamic switching during running.

 CAM curves are easy to correct: The running cam table can be modified dynamically.

 Support one master and multiple slaves: one main shaft can have multiple slave shafts corresponding to it.

 Cam lifter: multiple cam lifters and multiple setting intervals are allowed.

 Cam clutch: It can make the cam enter and exit the cam running through the user program.

AX series programmable controller software manual Application Programming

-118-

 Special functions: Virtual main shaft, phase offset and output superposition are supported.

Note: "online modification of CAM curve" refers to the modification of the key point coordinates of the CAM curve

according to the needs of control characteristics during the execution of the program written by the user. The content to be

modified is generally the key point coordinates, but it can also be the number of key points, the distance range of the main

axis.

The AX series programmable controller electronic cam function contains three control elements:

(1) Main shaft: Reference for synchronous control.

(2) Slave shaft: a servo axis that follows the movement of the main shaft according to the non-linear characteristics.

(3) Cam table: Data table or cam curve describing the relative position, range, periodicity of the master-slave shafts.

The commonly used function blocks related to electronic cam are listed in the following table.

Table 8-2 Commonly used electronic cam function blocks

MC Command Description

MC_CamTableSelect
Run this command to associate the main shaft, slave shaft and

cam table.

MC_CamIn Let the slave shaft enter the cam running

MC_CamOut Let the slave shaft exit the cam running

MC_Phasing Main shaft phase modification

8.2.1 Periodic mode of the cam table

(1) Single cycle mode (Periodic:=0): After the cam table cycle is completed, the slave shaft leaves the cam running state,

as shown in Figure 8-2.

Figure 8-2 Single cycle mode

(2) Periodic mode (Periodic:=1): After the cam table cycle is completed, the slave shaft will start the next cam cycle until

the user program commands it to exit the cam running state, as shown in Figure 8-3.

Figure 8-3 Periodic mode

AX series programmable controller software manual Application Programming

-119-

8.2.2 Input method of cam table

(1) When creating a new cam table, the system will automatically generate the simplest cam curve, on which the user can

edit and customize the CAM curve table.

(2) User can increase or decrease the number of key points in the cam curve or change the coordinates of the key points.

(3) The line pattern between the two key points of the cam curve can be set to a straight line or a quantic polynomial, and

the system will optimally optimize each curve to minimize sudden changes in speed and acceleration.

Figure 8-4 CAM curve

8.2.3 Data structure of cam table

Invtmatic Studio contains data structure for each CAM table that describes the feature data of the CAM table. The

following figure describes the data structure of the "CAM0" cam table. Please note the names of the variables in the

structure.

Figure 8-5 Data structure of cam table

Invtmatic Studio has an internal data structure to characterize the CAM table. We can also write a CAM table manually, or

modify the CAM feature data by accessing the data structure.

Note: When we state the CAM0 cam table, the system automatically states the CAM0 data structure of the global variable

type by default, along with the CAM0_A[i] array. For example, modify the number of key points or coordinates of the CAM0

cam table in the user program.

CAM0. nElements:=10; // Change the number of key points to 10.

CAM0. xEnd:=300; // Change the end point of the main shaft to 300.

//For example, modify the coordinates of two key points in the user program.

CAM0_A[2].dx:=10;

AX series programmable controller software manual Application Programming

-120-

CAM0_A[2].dy:=30;

CAM0_A[2].dv:=1;

CAM0_A[2].da:=0;

CAM0_A[3].dx:=30;

CAM0_A[3].dy:=50;

CAM0_A[3].dv:=1;

CAM0_A[3].da:=0;

8.2.4 CAM table reference and switch

CAM table is stored in the controller with an array, which can be pointed to by specific MC_CAM_REF variable type, such

as statement:

CAM table q: MC_CAM_REF;

You can assign a value to this variable, namely pointing it to a specific CAM table:

CAM table q:= Cam0; // Point to the required CAM table.

CAM table q: MC_CAM_REF; // Cam table pointer;

TableID: uint; // Cam table selection command that can be set by HMI;

Case TableID of

0: CAM table q: = CAM table A;

1: CAM table q: = CAM table B;

2: CAM table q: = CAM table C;

End_case

MC_CamTableSelect_0(//CAM relationship

Master:= Virtual main shaft,

Slave:= CAM slave shaft,

CamTable:= CAM table q,

Execute:= bSelect, // Rising edge triggers CAM table selection.

Periodic:= TRUE,

MasterAbsolute:=FALSE,

SlaveAbsolute:= FALSE);

In the above example, the assignment operation of the MC_CAM_REF variable can be used to switch multiple CAM

tables.

AX series programmable controller software manual Function module command

-121-

Appendix A Function module command

A.1 ModbusRTU command library

A.1.1 Definition and use of ModbusRTU master command library variables

A.1.1.1 Variable definition

Module Variable Type Function Remarks

ModbusRTU_Master

_Init_COM1

Execute1

INPUT

BOOL

Serial port

initialization

function

0: Inactive

1: Active

Baud1 DINT Baud rate E.g. 115200

Databits1 INT Data bit
E.g. 8 bits(without 7-bit

ASCII)

Stopbits1 INT Stop bit E.g. stop bit 1, stop bit 2

Parity1 INT Check bit

0: No check

1: Odd check

2: Even check

Slave1 UINT Slave ID 1-128

Timeout1 DINT Timeout time E.g. 1000

bDone1

OUTPUT

BOOL Complete sign

0: Command is executing

1: Command execution

complete

Error1 BOOL Error sign
0: No error

1: Error exists

ErrorID1 INT Error code
See ModbusRTU error code

table.

ModbusRTU_Master

_Fun_COM1

xExecute1

INPUT

BOOL
Read and

write function

0: Inactive

1: Active

Fun_Code1 INT Function code
0x01, 0x03, 0x05, 0x06,

0x0F, 0x10

Addr1 UINT Address 0x0000–0xFFFF

DataCount1 UINT Count
Read: 1–250

Write: 1–240

DataPtr1

POINTE

R TO

INT

Data pointer

Point to the address where

the read and write data is

stored.

Error1

OUTPUT

BOOL Error sign
0: No error

1: Error exists

ErrorID1 INT Error code
See ModbusRTU error code

table.

When serial port 2 is used as ModbusRTU_Master master, the number of variables in serial port 2 is the same. The

number after the variable name is changed from "1" to "2", e.g. "ModbusRTU_Master_Init_COM2".

A.1.1.2 How to use

1) ModbusRTU_Master master connects to the slave

AX series programmable controller software manual Function module command

-122-

Module Setting item Function Example

ModbusRTU_Master

_Init_COM1

Execute1
Slave enable

variable
Enable := TRUE

Baud1 Baud rate Baud1 := 19200

Databits1 Data bit Port :=8

Stopbits Stop bit Unit := 1

Parity1 Check bit Parity1:=2

Slave1 Slave ID Slave1:= 12

Timeout1 Timeout time Delay Time := 1000

To define the ModbusRTU slave to be connected, refer to the above COM1 parameters table for unified configuration. The

reference example (structured text ST) is as follows:

Figure A-1 Parameter configuration example

2) After completing the configuration of the relevant parameters, set the communication function parameters as follows:

Setting item Function Example

xExecute1
RTU communication function enable

code
RW:= TRUE

Fun_Code1 Function code Fun_Code1:=0x03

Addr1
Start address of the read and write

register
Addr := 2001

DataCount1
Number of the read and write

registers
Conut := 12

DataPtr1
Pointer to the address of the

read/write data storage area
ADR(DATE_RTU1)

AX series programmable controller software manual Function module command

-123-

Figure A-2 Parameter configuration example

A.1.2 Definition and use of ModbusRTU slave library variables

A.1.2.1 Variable definition

Module Variable Type Function Remarks

ModbusRTU_Slave1

Execute1

INPUT

BOOL

Serial port

initialization

function

0: Inactive

1: Active

Baud1 DINT Baud rate E.g. 115200

Databits1 INT Data bit E.g. 8 bits, 7 bits

Stopbits1 INT Stop bit E.g. stop bit 1, stop bit 2

Parity1 INT Check bit

0: No check

1: Odd check

2: Even check

Slave_Addr1 UINT Slave number 1–128

Enable1 BOOL
Read and

write function

0: Inactive

1: Active

Done1

OUTPUT

BOOL
Complete

sign

0: Incomplete

1: Completed

ErrorID1 BYTE Error code
See ModbusRTU error code

table.

AX series programmable controller software manual Function module command

-124-

A.1.2.2 How to use

1) Configure serial port parameters to establish Modbus RTU master and slave connections.

Module Setting item Function Example

ModbusRTU_Slave1

Execute1 Slave enable variable Enable := TRUE

Baud1 Baud rate Baud1 := 19200

Databits1 Data bit Port :=8

Stopbits Stop bit Unit := 1

Parity1 Check bit Parity1:=2

Timeout1 Timeout time Delay Time := 1000

Slave_Addr1 Slave number Slave1:= 12

Set the slave according to the serial port configuration parameters of the ModbusRTU master, referring to the parameters

in the above table. (Slave_Addr1 should map to the Slave1 of the master.)

2) ModbusRTU master and ModbusRTU slave perform read and write data communication

Enable Execute1 to active the ModbusRTU slave. If the function code of the master is 0x03, read the holding register. If

the function code of the master is 0x10, write multiple registers. The corresponding storage area can be defined in the

variable area, and its size should not be less than the size of the data to be written by the ModbusTCP master. If the

master function code is 0x0F (write multiple coils) or other function codes, the operation is the same as the above

process.

AX series programmable controller software manual Function module command

-125-

A.2 ModbusTCP command library

A.2.1 Definition and use of ModbusTCP master command library variables

A.2.1.1 Variable definition

Variable Type Function Remarks

Enable

INPUT

BOOL
ModbusTCP

function
0: Inactive 1: Active

IP STRING Slave IP address E.g. “192.168.1.13”

Port DINT Slave port number E.g. 502

Unit INT Slave unit number Non-negative integer

DelayTime INT Timeout time Non-negative integer

Fun_Enable BOOL
Function code

enable
0: Inactive 1: Active

fun_code BYTE Function code

0x03: Read multiple registers

mode

0x10: Write multiple registers

mode

Addr UINT
Read and write

register address
E.g. 2000, 2001

Count INT
Number of the read

and write registers

Max. number of the read and

write registers at once is 120.

CoilSingleData INT Write single coil The value is 0 or 1.

BitPtr
POINTER TO

BOOL

Pointer to read and

write bit data

Save the bit data to be read and

written

DataPtr POINTER TO INT
Read and write

pointer

Store the location information of

the data read or store the data to

be written to the register.

Done

OUTPUT

BOOL Complete sign
0: Command is executing

1: Command execution complete

Error BOOL Error sign 0: No error 1: Error exists

ErrorID INT Error code
See ModbusTCP error code

table.

A.2.1.2 How to use

1) ModbusTCP_Master master connects to the slave

Set the parameters of the ModbusTCP slave to be connected in the project monitoring state as shown in the following

table.

Setting item Function Example

Enable Slave enable variable Enable := TRUE

IP address
IP address of a Modbus TCP slave connected to

the master
IP := ‘192.168.1.13’

Port
Port number of a Modbus TCP slave connected

to the master
Port := ‘502’

Unit
Unit number of a Modbus TCP slave connected

to the master
Unit := 3

Delay Time Function start timeout time Delay Time := 1000

AX series programmable controller software manual Function module command

-126-

When the master accesses a single slave, the above variables should be assigned separately. The reference example

(function block diagram FDB to create the main program) is as follows:

Figure A-3 Parameter configuration example

The function block in the above figure represents an independent ModbusTCP master and slave connection. To add a

new ModbusTCP master and slave connection, create a new function block first, and then configure the new parameters

according to the parameter configuration example in the above figure.

2) After completing the configuration of the relevant parameters, set the communication parameters as follows:

Setting item Function Example

Fun_Enable Function code enable switch Fun_Enable:= TRUE

fun_code
Read and write multiple

register coil function
Fun_code := 3

Addr
Start address of the read and

write register
Addr := 2001

Count
Number of the read and write

registers
Conut := 12

DataPtr
Pointer to the address of the

read/write data storage area
ADR(DATE_TCP)

Figure A-4 Parameter configuration example

AX series programmable controller software manual Function module command

-127-

Each of the operation blocks in the figure above represents a ModbusTCP request. The figure defines a

ModbusTCP_Master and slave connection. The first and third operation blocks represent the read operation of the holding

register (0X03) of different slaves, and the second and fourth operation blocks represent the writing of a certain number of

data in the registers of different slaves.

To add different communication requests for the above ModbusTCP_Master master and slave connection, create the

same function block and change the communication parameters according to the example in the figure.

A.2.2 Definition and use of ModbusTCP slave command library variables

A.2.2.1 Variable definition

Variable Type Function Remarks

Enable

INPUT

BOOL ModbusTCP_Slave function 0: Inactive 1: Active

Port DINT Slave port number Default value is 502.

Unit INT Slave unit number Slave unit number (1 -247)

Done

OUTPUT

BOOL Complete sign

0: Command is executing 1:

Command execution

completed

IP STRING IP address of the slave

IP address of the local

machine (cannot be changed

here)

Error BOOL Error sign 0: No error 1: Error exists

ErrorID INT Error code
See ModbusTCP error code

table.

A.2.2.2 How to use

(1) ModbusTCP master reads data from ModbusTCP_Slave

Enable Enable to active the ModbusTCP_Slave slave. If the master function code is 0x03, read the holding register. Set

the size of InputSize, create an array of InputSize to store the data to be read by the master, and then assign the address

of the array to the Inputs pointer. If the corresponding master function code is 0x01 (read coil), the operation is the same

as the above process.

(2) ModbusTCP master writes data to ModbusTCP_Slave

Enable Enable to active the ModbusRTU slave. If the function code of the master is 0x10, write multiple registers. The

corresponding storage area can be defined in the variable area, and its size should not be less than the size of the data to

be written by the ModbusTCP master. If the master function code is 0x0F (write multiple coils) or other function codes, the

operation is the same as the above process.

A.3 CmpHSIO_C library description

CmpHSIO_C library contains function blocks for counting, latching, preset values, pulse width measurement, timing

sampling, count value comparison and other functions. The application required for counting is completed by calling these

function blocks.

A.3.1 Counter_HP

This function block enables single pulse, quadrature, timing, direction + pulse counting.

When a counter is required by other modules, the counting function block will first call this module to set the corresponding

counter. The parameter "Task cycle number of update frequency" is used so that at least 1 pulse change can be read

within the update frequency period. Otherwise the frequency will be displayed as 0. The number of channels ranges from

0 to 7. Due to the interference of high-speed counting input, the filter parameter Filt_Set needs to be set in the device

description file. The recommended value is 2us.

AX series programmable controller software manual Function module command

-128-

Table A-1 Counter

Parameter Type Input/Output type Function

Enable BOOL IN
True enables counting and

False disables counting.

Channel BYTE IN Number of channels[0,7]

CounterParameter Counter_Parameter IN

For counter parameters, see

CounterParameter

parameter description.

Value DINT OUT Current count value

Frequency DWORD OUT Counting frequency (Hz)

Velocity DWORD OUT Counting velocity (r/min)

Direction BOOL OUT

True indicates negative

direction and False indicates

positive direction.

Break BOOL OUT

True indicates disconnected

and False indicates

connected.

Error BOOL OUT Error sign

ErrorID BYTE OUT Error code

Figure A-5 Counter

CounterParameter parameter description

AX series programmable controller software manual Function module command

-129-

Control: For settings, please refer to the following Control setting description.

TaskPeriodNum: Set the number of task cycles between the pulse frequency updates.

UpValue: the upper limit value of the counter. This is the maximum value when the count is a linear count.

DownValue: the lower limit value of the counter. This is the minimum value when the count is a linear count.

Ratio: the resolution of the counter, which represents the count value of one revolution, used for frequency calculation.

The following table shows the correspondence between the bit of the control word and function.

Bit Control word Function value description

0 Enable counting (timing)
0: Disable

1: Enable

1–2 Frequency multiplication mode
0: Rated quadrature frequency

1: Quadruple quadrature frequency

3 Clear counting (timing)
0: Disable

1: Enable

4–6 Timing unit

0: 1us

1: 10us

2: 100us

3: 1ms

7 Single pulse and timing direction

0: Single pulse and timing direction,

positive

1: Single pulse and timing direction,

negative

8 Counting mode
0: Cycle

1: Linear

9–11 Latch control of preset and count value

1: Software trigger write

2: External trigger write, external trigger

source CnT

3: Comparison consistent trigger write

4: Latch function, external trigger source

CnT

12–15 Reserved Reserved

A.3.1.1 Single pulse counting

Configure the input port to a counting function and the counting mode to single pulse counting. Each counting channel has

two signals CxA and CxB, where A is pulse input and B is low level, and x is the number of channels, 0 =< x <= 7.

Currently the counter supports a maximum of 8 channels.

Function configuration

A: Counting mode configuration

Counting mode function configuration

//During the counting mode configuration for counter 0 and 1, set single pulse value to 0, the low 4 bits of the byte to

counter 0, and the high 4 bits to counter 1.

xmodea:=16#00;

//During the counting mode configuration for counter 2 and 3, set single pulse value to 0, the low 4 bits of the byte to

counter 2, and the high 4 bits to counter 3.

xmodeb := 16#00;

AX series programmable controller software manual Function module command

-130-

Configure variable mapping for counter mode

B: Input terminal function configuration, set to counting function

in0:=in1:=1;//Set input port to counting function for counter 0.

Input terminal variable mapping

C: Signal filter parameters configuration

filt_set:= 8;//The unit is 0.25us, which is equivalent to 2us. This value can be adjusted for different

interference.

Filter parameter variable mapping

D: Control parameter configuration

Set control parameters according to function blocks

Set the control word. The following operation is based on bit.

 //Enable counting

 Control.0:=1;

 //Frequency multiplication setting 1: quadruple frequency and only quadrature counting is valid, 0: rated

frequency

 Control.1:=0;

 Control.2:=0;

 //Clear counting 1: Enable 0: Disable

 Control.3:=0;

 //Counting direction 0: Positive 1: negative

 Control.7:=0;

// Counting modes 1: Linear 0: Cycle

 Control.8:=0;

//Select timing unit. 0 is 1us, 1 is 10us, 2 is 100us, 3 is 1ms, and this parameter is invalid in non-timing mode.

Control.4:=0;

 Control.5:=0;

AX series programmable controller software manual Function module command

-131-

 Control.6:=0;

Preset value control:

1 Software trigger write;

2 External trigger write. Select the external trigger source among X8, X9, XA, XB (changed to: CnT, where n is the

count channel, 0 =< n <= 3. Each trigger source corresponds to a count channel).

3 Comparison consistent trigger write

Latch control of count (timing) value：

4 Enable the count value latching. Select the external trigger source among X8, X9, XA, XB (changed to: CnT,

where n is the count channel, 0 =< n <= 3. Each trigger source corresponds to a count channel).

 Control.9:=0;

 Control.10:=0;

 Control.11:=0;

counterparam[0].Control:= Control;//Control word

counterparam[0].TaskPeriodNum:=1;//The number of task cycles between the pulse frequency updates

counterparam[0].UpValue:=10000000;

counterparam[0].DownValue:=-1000;

counterparam[0].Ratio:=10000;

Program code example

Counter0(

 Enable:= TRUE,

 Channel:= 0, //Select counter 0. Select a value from [0,7] for other counter.

 CounterParameter:=counterparam[0],

 Value=> value0, //Output count

 Frequency=> fre0, //Output count frequency value

 Velocity=> vel0, //Output count velocity value

 Direction=> ,

 Break=> ,

 Error=> ,

 ErrorID=>);

Time sequence description

+/-1 ...+/-1 +/-1

CnA

CnB

Figure A-6 Single pulse input diagram

AX series programmable controller software manual Function module command

-132-

Note:

Single-pulse counting needs to be cumulative or subtractive depending on the configured counting direction. In forward

running, the counter will increase by one every time a pulse comes, otherwise it will decrease by one. n indicates counting

channel, 0 =< n <= 7.

Single pulse is commonly used in the counting of objects on the production line. The sensor outputs a high-level pulse

every time it detects an object.

A.3.1.2 Quadrature encoder pulses

The quadrature signal is commonly used in the output signal of the quadrature encoder. It contains signals A, B, and Z,

where A and B are pulse signals with a phase difference of 90°, and Z is the origin signal. One pulse is generated per

revolution. Z signal is generally used to clear counters, compensation, and origin positioning. It is barely used in counting.

Configure the input port to a counting function, and the counting mode to a quadrature counting. All 16 input ports can be

selected for quadrature counting. Currently the counter supports a maximum of 8 channels.

Function configuration

A: Counting mode configuration

Counting mode function configuration

//During the counting mode configuration for counter 0 and 1, set quadrature counting value to 1, the low 4 bits of the

byte to counter 0, and the high 4 bits to counter 1.

xmodea:=16#11;

//During the counting mode configuration for counter 2 and 3, set quadrature counting value to 1, the low 4 bits of the

byte to counter 2, and the high 4 bits to counter 3.

xmodeb := 16#11;

Configure variable mapping for counter mode

B: Input terminal function configuration, set to counting function

in0:=in1:=1;//Set input port to counting function for counter 0.

Input terminal variable mapping

C: Signal filter parameters configuration

filt_set:= 8;//The unit is 0.25us, which is equivalent to 2us. This value can be adjusted for different interference.

Filter parameter variable mapping

D: Control parameter configuration

AX series programmable controller software manual Function module command

-133-

Set the control word. The following operation is based on bit.

 //Enable counting

 Control.0:=1;

 //Frequency multiplication setting 1: quadruple frequency and only quadrature counting is valid, 0: rated frequency

 Control.1:=0;

 Control.2:=0;

 //Clear counting 1: Enable 0: Disable

 Control.3:=0;

 //Counting direction 0: Positive 1: negative

 Control.7:=0;

//Counting modes 1: Linear 0: Cycle

 Control.8:=0;

//Select the timing unit, where 0 indicates 1us, 1 indicates 10us, 2 indicates 100us, 3 indicates 1ms. This parameter

is invalid in non-timing mode.

Control.4:=0;

 Control.5:=0;

 Control.6:=0;

Preset value control:

1 Software trigger write;

2 External trigger write. Select the external trigger source among X8, X9, XA, XB (i.e. CnT, where n is the count

channel, 0 =< n <= 3. Each trigger source corresponds to a count channel).

3 Comparison consistent trigger write

Latch control of count (timing) value：

4 Enable the count value latching. Select the external trigger source among X8, X9, XA, XB (i.e. CnT, where n is the

count channel, 0 =< n <= 3. Each trigger source corresponds to a count channel).

 Control.9:=0;

 Control.10:=0;

 Control.11:=0;

Set control parameters for counting function blocks

counterparam[0].Control:= Control;//Control word

counterparam[0].TaskPeriodNum:=1;//The number of task cycles between the pulse frequency updates

counterparam[0].UpValue:=10000000;

counterparam[0].DownValue:=-1000;

counterparam[0].Ratio:=10000;

AX series programmable controller software manual Function module command

-134-

Program code example

Counter0(

 Enable:= TRUE,

 Channel:= 0, //Select counter 0. Select a value from [0,7] for other counter.

 CounterParameter:=counterparam[0],

 Value=> value0, //Output count

 Frequency=> fre0, //Output count frequency value

 Velocity=> vel0, //Output count velocity value

 Direction=> ,

 Break=> ,

 Error=> ,

 ErrorID=>);

Time sequence description

(1) Forward

CnA

CnB

Figure A-7 Quadrature pulse forward input diagram

(2) Reverse

CnA

CnB

Figure A-8 Quadrature pulse reverse input diagram

Note:

Quadrature counting needs to be cumulative or subtractive depending on the direction of encoder rotation. In forward

rotation (phase A is 90° ahead of phase B), accumulation is performed according to the frequency multiplication mode.

The counter is increased by one for each CnA cycle in rated frequency mode, and increased by one for each signal edge

of CnA and CnB in quadruple frequency mode. In reversed rotation (phase B is 90° ahead of phase B), the counter is

decreased by one for each CnA cycle in rated frequency mode, and decreased by one for each signal edge of CnA and

CnB in quadruple frequency mode. n indicates counting channel, 0 =< n <= 7.

A.3.1.3 Timing counting

The input port can be left blank. Configure the counting mode to timing counting, which counts according to the set time

unit. Currently the counter supports a maximum of 8 channels.

Timing counting actually implements the clock function. It can preset the timing start point, time unit, and timing duration

(by setting the comparison value), and output the comparison equal signal when the timing duration is reached. The

parameters can also be reset and re-timed after the timing is complete. Timing counting needs to be cumulative or

subtractive depending on the configured counting direction. In forward running, the counter will increase by one every

AX series programmable controller software manual Function module command

-135-

other cycle, otherwise it will decrease by one.

Function configuration

A: Counting mode configuration

Counting mode function configuration

//During the counting mode configuration for counter 0 and 1, set timing counting value to 2, the low 4 bits of the

byte to counter 0, and the high 4 bits to counter 1.

xmodea:=16#22;

// During the counting mode configuration for counter 2 and 3, set timing counting value to 2, the low 4 bits of the

byte to counter 2, and the high 4 bits to counter 3.

xmodeb := 16#22;

Configure variable mapping for counter mode

B: Input terminal function configuration, set to counting function (No effect if not configured)

in0:=in1:=1;//Set input port to counting function for counter 0.

Input terminal variable mapping

C: Signal filter parameters configuration (No effect if not configured)

filt_set:= 8;//The unit is 0.25us, which is equivalent to 2us. This value can be adjusted for different

interference.

Filter parameter variable mapping

D: Control parameter configuration

Set the control word. The following operation is based on bit.

 //Enable counting

 Control.0:=1;

 //Frequency multiplication setting 1: quadruple frequency and only quadrature counting is valid, 0: rated

frequency.

 Control.1:=0;

 Control.2:=0;

 //Clear counting 1: Enable 0: Disable

AX series programmable controller software manual Function module command

-136-

 Control.3:=0;

//Counting direction 0: Positive 1: negative

 Control.7:=0;

//Counting modes 1: Linear 0: Cycle

 Control.8:=0;

//Select the timing unit, where 0 indicates 1us, 1 indicates 10us, 2 indicates 100us, 3 indicates 1ms. The counter

counts in this setting unit.

Control.4:=0;

 Control.5:=0;

 Control.6:=0;

Preset value control:

1 Software trigger write;

2 External trigger write. Select the external trigger source among X8, X9, XA, XB.

3 Comparison consistent trigger write

Latch control of count (timing) value：

4 Enable the count value latching. Select the external trigger source among X8, X9, XA, XB.

 Control.9:=0;

 Control.10:=0;

 Control.11:=0;

Set control parameters for counting function blocks

counterparam[0].Control:= Control;//Control word

counterparam[0].TaskPeriodNum:=1;//The number of task cycles between the pulse frequency updates

counterparam[0].UpValue:=10000000;

counterparam[0].DownValue:=-1000;

counterparam[0].Ratio:=10000;

Program code example

Counter0(

 Enable:= TRUE,

 Channel:= 0, //Select counter 0. Select a value from [0,7] for other counter.

 CounterParameter:=counterparam[0],

 Value=> value0, //Output count

 Frequency=> fre0, //Output count frequency value

AX series programmable controller software manual Function module command

-137-

 Velocity=> vel0, //Output count velocity value

 Direction=> ,

 Break=> ,

 Error=> ,

 ErrorID=>);

Time sequence description

Note: All count channels can perform timing counting.

A.3.1.4 Pulse + direction counting

Pulse + direction signal includes CxA and CxB. CxA is connected to pulse signal, and CxB is connected to direction signal.

The high level of the direction signal indicates the forward running, and the low level indicates the reversed running. x is

the number of channels, 0=< x <= 7.

Configure the input port to a counting function, and the counting mode to the pulse + direction counting. All 16 input ports

can be selected for pulse + direction counting. Currently the counter supports a maximum of 8 channels.

Function configuration

A: Counting mode configuration

Counting mode function configuration

//During the counting mode configuration for counter 0 and 1, set pulse + direction value to 3, the low 4 bits of the

byte to counter 0, and the high 4 bits to counter 1.

xmodea:=16#33;

//During the counting mode configuration for counter 2 and 3, set pulse + direction value to 3, the low 4 bits of the

byte to counter 2, and the high 4 bits to counter 3.

xmodeb := 16#33;

Configure variable mapping for counter mode

B: Input terminal function configuration, set to counting function

in0:=in1:=1;//Set input port to counting function for counter 0.

Input terminal variable mapping

C: Signal filter parameters configuration

filt_set:= 8;//The unit is 0.25us, which is equivalent to 2us. This value can be adjusted for different

interference.

Filter parameter variable mapping

AX series programmable controller software manual Function module command

-138-

D: Control parameter configuration

Set the control word. The following operation is based on bit.

 //Enable counting

 Control.0:=1;

 //Frequency multiplication setting 1: quadruple frequency and only quadrature counting is valid, 0: rated

frequency

 Control.1:=0;

 Control.2:=0;

 //Clear counting 1: Enable 0: Disable

 Control.3:=0;

 //Counting direction 0: Positive 1: negative

 Control.7:=0;

//Counting modes 1: Linear 0: Cycle

 Control.8:=0;

// Select the timing unit, where 0 indicates 1us, 1 indicates 10us, 2 indicates 100us, 3 indicates 1ms. This parameter

is invalid in non-timing mode.

Control.4:=0;

 Control.5:=0;

 Control.6:=0;

Preset value control:

1 Software trigger write;

2 External trigger write. Select the external trigger source among X8, X9, XA, XB (changed to: CnT, where n is the

count channel, 0 =< n <= 3. Each trigger source corresponds to a count channel).

3 Comparison consistent trigger write

Latch control of count (timing) value：

4 Enable the count value latching. Select the external trigger source among X8, X9, XA, XB (changed to: CnT,

where n is the count channel, 0 =< n <= 3. Each trigger source corresponds to a count channel).

 Control.9:=0;

 Control.10:=0;

 Control.11:=0;

Set control parameters for counting function blocks

counterparam[0].Control:= Control;//Control word

counterparam[0].TaskPeriodNum:=1;//The number of task cycles between the pulse frequency updates

counterparam[0].UpValue:=10000000;

AX series programmable controller software manual Function module command

-139-

counterparam[0].DownValue:=-1000;

counterparam[0].Ratio:=10000;

Program code example

Counter0(

 Enable:= TRUE,

 Channel:= 0, //Select counter 0. Select a value from [0,7] for other counter.

 CounterParameter:=counterparam[0],

 Value=> value0, //Output count

 Frequency=> fre0, //Output count frequency value

 Velocity=> vel0, //Output count velocity value

 Direction=> ,

 Break=> ,

 Error=> ,

 ErrorID=>);

Time sequence description

 (1) Forward

+1 ...+1 +1

CnA

CnB

Figure A-9 Pulse + direction forward input diagram

(2) Reverse

-1 ...-1 -1

CnA

CnB

Figure A-10 Pulse + direction reverse input diagram

Note:

Pulse + direction counting needs to be cumulative or subtractive depending on the direction signal. In forward running, the

counter will increase by one every time a pulse comes, otherwise it will decrease by one. n indicates counting channel, 0

=< n <= 7.

A.3.2 LatchValue_HP

To call the latch value reading module, the Counter_HP module should be called to set the parameters of the counter used.

This module selects the trigger signal by selecting CxT, and latches the corresponding value when there is a signal (rising

edge trigger latch). Only signals X8, X9, XA, XB have a trigger function. It is necessary to set the count value latch control

and other parameters in the counter, indicating that Done will not be set to true when the latch value is 0.

Table A-1 Latch_Value

AX series programmable controller software manual Function module command

-140-

Parameter Type Input/Output type Function

Enable BOOL IN Enable

Channel BYTE IN
Number of

channels[0,3]

Value DINT OUT Latch value

Done BOOL OUT
Execution complete

sign

Error BOOL OUT Error sign

ErrorID BYTE OUT Error code

Figure A-11 Latch_Value

A.3.2.1 Function configuration

A: Configure Counter_HP function block

See Counter_HP function block description for details.

Special configuration for the latch function is described as follows:

1: Configure the input terminal as latching function.

Example: Configure X8 as the latch triggering port.

in8:=2;

2: Configure control parameters for latching enable

Example: Configure to enable latching.

Control.9:=0;

Control.10:=0;

Control.11:=1;

B: Interrupt configuration (if required)

See probe interrupt instruction for details.

C: Configure LatchValue_HP function block

The channel setting of the function block LatchValue_HP is the same as the channel value of Counter_HP.

Example: Select counter 0 and store the latch value in latch0.

latchValue0(

 Enable:= TRUE,

 Channel:= 0,

AX series programmable controller software manual Function module command

-141-

 Value=> latch0,

 Done=> ,

 Error=> ,

 ErrorID=>);

A.3.2.2 Time sequence description

Value (n-1) Value n ... Value m Value (m+1)Cnt[x]

CxT
...

Lock

Function

EnabledLatchValue[x] Value n Value m...

Lock Function Enabled

Figure A-12 Latch function diagram

Note:

x indicates the counting channel, 0 =< x <= 3, Cnt[x] indicates the count value of the xth counting channel, CxT indicates

the latch signal of the xth channel, and LatchValue[x] indicates the latch value of the xth channel. When the trigger signal

of CxT latch arrives (the latch function must be configured correctly), the Cnt[x] count value will be latched to

LatchValue[x]. The upper computer can read the value of LatchValue[x] as needed. LatchValue[x] is a 32-bit signed

number, and the highest bit is the sign bit.

A.3.3 PresetValue_HP

There are three ways to write the counter preset values: software write, external trigger write, and count value comparison

equal write. To call this module, the Counter_HP module should be called to set the parameters of the counter used. Only

the four channels of input counter 0, 1, 2, 3 have parameter preset function. Parameters such as preset value control

should be set in the counter. Note: Done indicates that the preset value has been written into the FPGA, and it must be

enabled in the counter according to the set parameters. Done will not be set to true when the preset value is 0.

Table A-2 Preset_Value

Parameter Type Input/Output type Function

Enable BOOL IN Enable

Channel BYTE IN
Number of write

channels[0,3]

Value DINT IN
Preset value (start

value)

Done BOOL OUT
Complete sign, 1:

Complete

Error BOOL OUT Error sign

ErrorID BYTE OUT Error code

Figure A-13 Preset_Value

AX series programmable controller software manual Function module command

-142-

A.3.3.1 Function configuration

There are three ways to preset values. Select one of them as needed in actual use.

Software trigger write

In this mode, the function block PresetValue_HP enables the preset value writing. The software writing is done by the

upper computer ARM.

A: Configure Counter_HP function block

See Counter_HP function block description for details. Special configuration for the preset value function is

described as follows:

Configure the control parameter to the preset value for software trigger write.

Control.9:=1;

Control.10:=0;

Control.11:=0;

B: Configure PresetValue_HP function block

The channel setting of the function block PresetValue_HP is the same as the channel value of Counter_HP.

Example: Select counter 0 and set the preset value to 10000.

Set_Value0(

 Enable:= bPreSetFlag,

 Channel:= 0,

 Value:= 10000,

 Done=> ,

 Error=> ,

 ErrorID=>);

External trigger write

In this mode, the function block PresetValue_HP is enabled. The preset value is written when there is an external trigger

signal CxT. The rising edge of CxT is valid.

A: Configure Counter_HP function block

See Counter_HP function block description for details.

Special configuration for the external trigger function is described as follows:

1: Configure the input terminal as latching function.

Example: Configure X8 as the latch triggering port.

in8:=2;

2: Configure the control parameter to the preset value for external trigger write.

Control.9:=0;

Control.10:=1;

Control.11:=0;

AX series programmable controller software manual Function module command

-143-

B: Configure PresetValue_HP function block

The channel setting of the function block PresetValue_HP is the same as the channel value of Counter_HP.

Example: Select counter 0 and set the preset value to 10000. Write the preset value when the port is triggered.

Set_Value0(

 Enable:= bPreSetFlag,

 Channel:= 0,

 Value:= 10000,

 Done=> ,

 Error=> ,

 ErrorID=>);

Comparison consistent trigger write

In this mode, the function block PresetValue_HP is enabled. The preset value is written when the function block

CompareSingleValue_HP comparison is consistent.

A: Configure Counter_HP function block

See Counter_HP function block description for details. Special configuration for the comparison consistent trigger

function is described as follows:

Configure the control parameter to the preset value for comparison consistent trigger write.

Control.9:=1;

 Control.10:=1;

 Control.11:=0;

 B: Configure CompareSingleValue_HP function block

See CompareSingleValue_HP function block description for details.

C: Configure PresetValue_HP function block

The channel setting of the function block PresetValue_HP is the same as the channel value of Counter_HP.

Example: Select counter 0 and set the preset value to 10000. Write the preset value when the

CompareSingleValue_HP comparison is consistent.

Set_Value0(

 Enable:= bPreSetFlag,

 Channel:= 0,

 Value:= 10000,

 Done=> ,

 Error=> ,

 ErrorID=>);

A.3.3.2 Time sequence description

(1) Software trigger

AX series programmable controller software manual Function module command

-144-

Value (n-1) Value n ... Value m Value (m+1)
presetValue[x]

Wr_n

...

Preset
Function
Enabled

Cnt[x] Value n Value m...

Preset
Function
Enabled

Figure A-14 Software trigger preset function diagram

Note:

X indicates the counting channel, 0 =< x <= 3. presetValue[x] indicates the preset value of the xth counting channel. Wr_n

indicates the write signal of the upper computer and the low level is valid. Cnt[x] indicates the count value of the xth

channel counter. When the Wr_n low level arrives, the value of presetValue[x] is preset into Cnt[x].

(2) External trigger

Value (n-1) Value n ... Value m Value (m+1)

presetValue[x]

CxT
...

Preset

Function

EnabledCnt[x] Value n Value m...

Preset Function Enabled

Figure A-15 External trigger preset function diagram

Note:

x indicates counting channel, 0 =< x <= 3. presetValue[x] indicates the preset value of the xth counting channle, which is

the Value issued by the CompareSingleValue_HP module. CxT indicates the external preset trigger signal of the xth

channle and the rising edge is valid. Cnt[x] indicates the counter value of the xth channel. When the CxT rising edge

arrives, the value of presetValue[x] is preset into Cnt[x].

(3) Counts equal trigger

Value (n-1) Value n ... Value m Value (m+1)

presetValue[x]

cvEqPv[x]
...

Preset

Function

EnabledCnt[x] Value n Value m...

Preset Function Enabled

Figure A-16 Single-value comparison consistent trigger preset function diagram

Note:

x indicates the counting channel, 0 =< x <= 3. presetValue[x] indicates the preset value of the xth counting channel.

cvEqPv[x] indicates the single-value comparison consistent signal of the xth channel and the high level is valid. Cnt[x]

indicates the count value of the xth channel counter. When the cvEqPv[x] high level arrives, the value of presetValue[x] is

preset into Cnt[x]. presetValue[x] is a 32-bit signed number, and the highest bit is the sign bit.

A.3.4 PulsewidthMeasure_HP

This module uses pulse width measurement signal PWCx, and only the input signals X8, X9, XA, XB are valid for the

corresponding functions. The number of channels adopts the low 4-bit enabling channel, with bit 0 indicating channel 1, bit

1 indicating channel 2, bit 2 indicating channel 3 and bit 3 indicating channel 4. Example: Channel: = 2#00001010

indicates that channels 2 and 4 are enabled.

AX series programmable controller software manual Function module command

-145-

Table A-3 Pulsewidth_Measure

Parameter Type Input/Output type Function

Enable BOOL IN Enable

Channel BYTE IN
Channel number (4 low

bits valid)

Mode BYTE IN

Pulse width

measurement mode 1

indicates high level and

0 indicates low level

Value0 DINT OUT

Channel 0 pulse width

measurement value

(0.01us)

Value1 DINT OUT

Channel 1 pulse width

measurement value

(0.01us)

Value2 DINT OUT

Channel 2 pulse width

measurement value

(0.01us)

Value3 DINT OUT

Channel 3 pulse width

measurement value

(0.01us)

Error BOOL OUT Error sign

ErrorID BYTE OUT Error code

Figure A-17 Pulsewidth_Measure

A.3.4.1 Function configuration

This function block can call the function block PulsewidthMeasure_HP for pulse width measurement as long as the input

port is configured to pulse width measurement PWC.

Example 1: Perform pulse width measurement on X9. ch1_Value is the high level pulse width measurement value.

Input port configuration

in9:=4;

Function block program

PWM0(

 Enable:= TRUE,

 Channel:= 2#00000010,

 Mode:= 2#00000010, //High level measurement is enabled.

AX series programmable controller software manual Function module command

-146-

 Value0=> ,

 Value1=> ch1_Value,

 Value2=>,

 Value3=>,

 Error=> ,

 ErrorID=>);

Example 2: Perform pulse width measurement on X8, X9, XA, XB. ch0_Value, ch1_Value, ch2_Value, ch3_Value are the

high level pulse width measurement value for 4 ports respectively.

Input port configuration

in8:= in9:=4;

inA:= inB:=4;

Function block program

PWM0(

 Enable:= TRUE,

 Channel:= 2#00001111, //4 channels

 Mode:= 2#00001111, //The lower 4 bits represent 4 channels.

 Value0=>ch0_Value ,

 Value1=> ch1_Value,

 Value2=> ch2_Value,

 Value3=>ch3_Value ,

 Error=> ,

 ErrorID=>);

A.3.4.2 Time sequence description

(1) Positive pulse width detection

clk

PWC_en[x]

PWC_mode[x]

PWC[x]

1 2 3 ... n-1 nCnt[x] 0 0

n
pulseWidth[x]

AX series programmable controller software manual Function module command

-147-

 (2) Negative pulse width detection

clk

PWC_en[x]

PWC_mode[x]

PWC[x]

1 2 3 ... n-1 nCnt[x] 0 0

n
pulseWidth[x]

Description of positive and negative pulse width detection:

x indicates to the counting channel, 0=< x <= 3. PWC_mode[x] indicates the detection mode of the xth channel. High level

indicates positive pulse detection, and low level indicates negative pulse. PWC_en[x] indicates the enabling of the xth

channel with hight level valid. PWC[x] indicates the xth channel pulse input signal. Cnt[x] indicates the xth channel pulse

width detection counter. PulseWidth[x] indicates the xth channel pulse width in 0.01us without a sign.

A.3.5 SetCompareInterruptParam_HP

This function block is used to set the comparison interrupt source.

Table A-4 SetCompareInterruptParam

Parameter Type Input/Output type Function

Enable BOOL IN Enable

MoreOrSingle_Sel BYTE IN
Multi-value comparison

interrupt selection

MoreValueCount_Sel BOOL IN
Multi-value comparison

interrupt selection

Error BOOL OUT Error sign

ErrorID BYTE OUT Error code

Figure A-18 SetCompareInterruptParam

MoreOrSingle_Sel parameter description:

The counter interrupt status output is selected to control one interrupt channel per bit. There are 8 comparison interrupts

in total. The comparison interrupt corresponding to each MoreOrSingle_Sel bit value is described below.

AX series programmable controller software manual Function module command

-148-

Bit
Corresponding

Interrupt
Bit Value 1 Bit Value 0

0
Comparison interrupt

0

Interruption of the 0th

comparison point of the

multi-value comparison

counter

Counter 0 single-value

comparison interrupt

1
Comparison interrupt

1

Interruption of the first

comparison point of the

multi-value comparison

counter

Counter 1 single-value

comparison interrupt

2
Comparison interrupt

2

Interruption of the

second comparison

point of the multi-value

comparison counter

Counter 2 single-value

comparison interrupt

3
Comparison interrupt

3

Interruption of the third

comparison point of the

multi-value comparison

counter

Counter 3 single-value

comparison interrupt

4
Comparison interrupt

4

Interruption of the fourth

comparison point of the

multi-value comparison

counter

Counter 4 single-value

comparison interrupt

5
Comparison interrupt

5

Interruption of the fifth

comparison point of the

multi-value comparison

counter

Counter 5 single-value

comparison interrupt

6
Comparison interrupt

6

Interruption of the sixth

comparison point of the

multi-value comparison

counter

Counter 6 single-value

comparison interrupt

7
Comparison interrupt

7

Interruption of the

seventh comparison

point of the multi-value

comparison counter

Counter 7 single-value

comparison interrupt

MoreValueCount_Sel parameter description:

Select a counting channel for multi-value comparison interrupt. The MoreValueCount_Sel value is described as follows:

MoreValueCount_Sel Value Selected counting channel

0 Counter 0

1 Counter 1

2 Counter 2

3 Counter 3

A.3.5.1 Function configuration

To use this function block, call the CompareMoreValue_HP block. See the CompareMoreValue_HP description for details.

Example: Select counter 3 for a multi-value comparison interrupt and generate interrupts at comparison interrupt 0 and

comparison interrupt 1.

AX series programmable controller software manual Function module command

-149-

 interrupt_sel:=16#11;//Select multi-value comparison interrupt.

 count_sel:=16#3;//Select multi-value comparison interrupt counter.

 SetCompareInterruptParam(

 Enable:= enableparam,

 MoreOrSingle_Sel:= interrupt_sel,

 MoreValueCount_Sel:= count_sel,

 Error=> ,

 ErrorID=>);

A.3.6 TimingSampling_HP

Timing sampling is the calculation of the number of pulses acquired in a given time range, which can be a variety of pulse

signals supported by the input channel, including single pulse, CW/CCW, timing, and pulse+direction. To call this module,

the Counter_HP module should be called to set the parameters of the counter used. Please set Enable to false before

modifying the sampling time, otherwise the sampling may be abnormal.

Table A-5 Timing_Sampling

Parameter Type Input/Output type Function

Enable BOOL IN Enable

Channel BYTE IN
Number of

channels[0,7]

SampleEnable BOOL IN Enable sampling

Timeset DWORD IN Set sampling time (us)

Value DINT OUT Sample value

Done BOOL OUT
Complete sign 1:

Complete

Error BOOL OUT Error sign

ErrorID BYTE OUT Error code

Figure A-19 Timing_Sampling

A.3.6.1 Function configuration

A: Configure Counter_HP function block

See Counter_HP function block description for details. There is no need to set special parameters to use the timed

sampling function block.

B: Configure TimingSampling_HP function block

The channel setting of the function block TimingSampling_HP is the same as the channel value of Counter_HP.

Example: Select counter 1, set the sampling time to 20000us, and output the sampling pulse value to

sampleValue1.

AX series programmable controller software manual Function module command

-150-

Sampling1(

 Enable:= TRUE,

 Channel:= 1,

 SampleEnable:=TRUE,

 Timeset:= 20000, //us

 Value=> sampleValue1,

 Done=> ,

 Error=> ,

 ErrorID=>);

A.3.6.2 Time sequence description

Pulse[x]

SAMP_en[x]

1 2 3 ... n-1 nCnt[x] 0 0

n
sample[x]

SAMPTime[x]

1 2 0

Figure A-20 Sampling diagram

Note:

x indicates the xth counting channel, 0 =< x <= 3. Pulse[x] indicates the input pulse signal of the xth channel, which can be

a variety of pulse signals supported by the input channel, including single pulse, CW/CCW, timing, and pulse+direction.

SAMP_en[x] indicates the enabling of the xth channel with hight level valid. SAMPTime[x] indicates the sampling time of

the xth channel. Sample[x] indicates the number of pulses sampled on the xth channel, which is an unsigned number.

A.3.7 CompareSingleValue_HP

To call the single-value comparison output module, the Counter_HP module should be called to set the parameters of the

counter used. Enable the rising edge to update parameter. The low level module is invalid. The value of OutChanne

ranges from 0 to 7.

Table A-6 compare_singlevalue

Parameter Type Input/Output type Function

Enable BOOL IN Enable

Start_Cmp BOOL IN Start comparison

Channel BYTE IN Counting channel [0,7]

OutChannel DINT IN
Select output Channel

[0,7]

CmpValue DINT IN Set comparison value

Error BOOL OUT Error sign

ErrorID BYTE OUT Error code

AX series programmable controller software manual Function module command

-151-

Figure A-21 compare_singlevalue

A.3.7.1 Function configuration

A: Configure Counter_HP function block

See Counter_HP function block description for details. No special configuration is required for the single-value

comparison function block.

B: Interrupt configuration

See Comparison interrupt instruction fro details.

C: Configure CompareSingleValue_HP function block

The channel setting of the function block CompareSingleValue_HP is the same as the channel value of

Counter_HP.

Example: Select counter 3 and set the comparison value to 10000 and output channel to 0.

Cmp3(

 Enable:= TRUE,

 Start_Cmp:= bStart,

 Channel:= 3, //Counter

 OutChannel:= 0, //Output channel

 CmpValue:= 10000, //Comparison value

 Error=> ,

 ErrorID=>);

A.3.7.2 Time sequence description

Pulse[x]

n
pv[x]

m+1 m+2 m+3 ... n-1 nCnt[x] m n+1 n+2 n+3 ...m-1

Cnt[x]CvEqPv

CMP_single_en[x]

Figure A-22 Single-value comparison interrupt timing

Single-value comparison description:

x means counting channel, 0 =< x <= 7. Pulse[x] indicates the input pulse of the xth channel, which can be a variety of

AX series programmable controller software manual Function module command

-152-

pulse signals supported by the input channel, including single pulse, CW/CCW, timing, and pulse+direction. Pv[x]

indicates the comparison value of the xth channel. Cnt[x] indicates the xth channel counter value. CMP_single_en[x]

indicates the enabling of the xth channel single-value comparison. Cnt[x]CvEqPv indicates a single-value comparison

output for channel x. A high level is valid, which indicates that the count value is equal to pv.

The above example illustrates the counting accumulation, which is quite similar to the counting degression. If the count

value is equal to the pv value, the output Cnt[x]CvEqPv is valid.

A.3.8 CompareMoreValue_HP

To call the multi-value comparison output module, the Counter_HP module should be called to set the parameters of the

counter used. The comparison value must be increased or decreased in order, and the corresponding counter is set in

positive or negative direction. The maximum number of comparisons is 8. Enable the rising edge update parameter and

invalidate the low level module.

Table A-7 compare_morevalue

Parameter Type Input/Output type Function

Enable BOOL IN Enable

Start_Cmp BOOL IN Start comparison

Channel BYTE IN Counting channel [0,7]

CmpValue_Num BYTE IN
Number of comparison

values [1,100]

CmpValue POINTER TO DINT IN Set comparison value

CmpEqual_Num BYTE OUT
Number of equal

comparisons [1,100]

Error BOOL OUT Error sign

ErrorID BYTE OUT Error code

Figure A-23 compare_morevalue

A.3.8.1 Function configuration

A: Configure Counter_HP function block

See Counter_HP function block description for details. No special configuration is required for the multi-value

comparison function block.

B: Interrupt configuration (if required)

See Comparison interrupt instruction fro details.

C: Configure SetCompareInterruptParam_HP (if required)

See SetCompareInterruptParam_HP function block description for details.

C: Configure CompareSingleValue_HP function block

The channel setting of the function block CompareMoreValue_HP is the same as the channel value of

Counter_HP.

Example: Select counter 0 and set a comparison value from 1000 to 8000. Up to 8 comparison values can be

added in total. Set the comparison interrupt output channel to 0 and 1.

AX series programmable controller software manual Function module command

-153-

 FOR comp_num:=0 TO 7 BY 1 DO

 cmpvalue[comp_num]:=1000+1000*comp_num;

 END_FOR

 interrupt_sel:=16#3;

 count_sel:=16#0;

 SetCompareInterruptParam(

 Enable:= enableparam,

 MoreOrSingle_Sel:= interrupt_sel,

 MoreValueCount_Sel:= count_sel,

 Error=> ,

 ErrorID=>);

 compValue_num:=8;

 pcmpvalue:=ADR(cmpvalue[0]);//Obtain the address of the comparison value array.

cmpmore0(

 Enable:= benabele,

 Start_Cmp:= bcmpmore,

 Channel:= 0,

 CmpValue_Num:=compValue_num , //Total number of comparison values

 CmpValue:= pcmpvalue, //Pointer to the comparison value store address input

 CmpEqual_Num=> CmpEqual_Num0, //Sequence numbers of the equal comparison values

 Error=> ,

 ErrorID=>);

A.3.8.2 Time sequence description

Pulse[x]

n
Pv[x][y]

m+1 m+2 m+3 ... n-1 nCnt[x] m n+1 n+2 n+3 ...m-1

Cnt[x]CvEqPv[y]

CMP_more_en[x]

Figure A-24 Multi-value comparison interrupt timing

AX series programmable controller software manual Function module command

-154-

Multi-value comparison description:

x means counting channel, 0 =< x <= 3. y indicates the yth comparison output value of the selected counting channel, 0 =<

y <= 7. Pulse[x] indicates the input pulase of the selected xth channel, which can be a variety of pulse signals supported

by the input channel, including single pulse, CW/CCW, timing, and pulse+direction. Pv[x][y] indicates the yth comparison

value of the xth channel. Cnt[x] indicates the xth channel counter value. CMP_more_en indicates the enabling of the

multi-value comparison. Cnt[x]CvEqPv[y] indicates the yth comparison output value for channel x. A high level is valid,

which indicates that the count value is equal to pv.

The above example shows the counting accumulation, which is quite similar to the counting degression. If the count value

is equal to the pv value, the output Cnt[x]CvEqPv[y] is valid.

A.3.9 GetVersion_HP

Table A-8 get_version

Parameter Type Input/Output type Function

Enable BOOL IN Enable

Version STRING OUT Version

Figure A-25 get_version

A.3.10 Zphase_Clearpulse_HP

The counting channel Z signal clearing function clears the counter value when the high-speed counter detects the Z signal

of the counting channel. In actual use, the input signal needs to be configured as the Z signal function, and the input ports

X4, X5, X6, and X7 supports the Z signal function. Enable enables the rising edge to update axis. The low level module is

invalid.

If clearing and compensation are active at the same time, the clearing function take precedence as its priority is higher.

Table A-9 Zphase_Clearpulse

Parameter Type Input/Output type Function

Enable BOOL IN Enable

bEnableAxis0 BOOL IN
Enable Z phase clear pulse

for channel 0

bEnableAxis1 BOOL IN
Enable Z phase clear pulse

for channel 1

bEnableAxis2 BOOL IN
Enable Z phase clear pulse

for channel 2

bEnableAxis3 BOOL IN
Enable Z phase clear pulse

for channel 3

Error BOOL OUT Error sign

ErrorID BYTE OUT Error code

Figure A-26 Zphase_Clearpulse

AX series programmable controller software manual Function module command

-155-

A.3.10.1 Function configuration

A: Configure Counter_HP function block

See Counter_HP function block description for details.

There is special configuration for the counting channel Z signal clearing function.

1: Configure the input terminal as Z signal function.

Example: Configure X4 as Z signal function.

in4:=2;

B: Configure Zphase_Clearpulse_HP function block

Example: Use counter channel 0 and counter channel 1 with Z-phase clearing function.

Zphase_Clearpulse_FB(

 Enable:= TRUE,

 bEnableAxis0:= TRUE ,

 bEnableAxis1:= TRUE ,

 bEnableAxis2:= ,

 bEnableAxis3:= ,

 Error=> ,

 ErrorID=>);

A.3.10.2 Time sequence description

...

CnA

CnB
...

1 2 3 ... n-1 nCnt[n] 0 0 1 2 3

Z_clean_enable[n]

CnZ

m-1

Figure A-27 Clearing function timing diagram

Note:

n indicates the nth channel, 0 =< n <= 3. Z_clean_enable[n] indicates the Z clearing function enabling of the nth channel

with high level valid. Cnt[n] indicates the nth channel counter value. The above example illustrates the forward counting

mode, which is quite similar to the reversed counting mode. The reversed counting is started after the Z signal clearing.

A.3.11 Zphase_Compensate_HP

The counting channel Z signal compensation function compensates the counter value according to the counter resolution

parameter Ratio when the high-speed counter detects the Z signal of the counting channel. In actual use, the input signal

needs to be configured as the Z signal function, and the input ports X4, X5, X6, and X7 supports the Z signal function.

AX series programmable controller software manual Function module command

-156-

Enable enables the rising edge to update axis. The low level module is invalid. If clearing and compensation are active at

the same time, the clearing function take precedence as its priority is higher. After power-on, the compensation function

requires at least one count value change to take effect. Otherwise the compensation will not work.

Table A-10 Zphase_Clearpulse

Parameter Type Input/Output type Function

Enable BOOL IN Enable

bEnableAxis0 BOOL IN
Enable Z phase pulse

compensation for channel 0

bEnableAxis1 BOOL IN
Enable Z phase pulse

compensation for channel 1

bEnableAxis2 BOOL IN
Enable Z phase pulse

compensation for channel 2

bEnableAxis3 BOOL IN
Enable Z phase pulse

compensation for channel 3

Error BOOL OUT Error sign

ErrorID BYTE OUT Error code

Figure A-28 Zphase_Compensate

A.3.11.1 Function configuration

A: Configure Counter_HP function block

See Counter_HP function block description for details.

There is special configuration for the counting channel Z signal compensation function.

1: Configure the input terminal as Z signal function.

Example: Configure X4 as Z signal function.

in4:=2;

B: Configure Zphase_Compensate_HP function block

Example: Use counter channel 0 and counter channel 1 with Z-phase compensation function.

 Zphase_Compensate_FB(

 Enable:= TRUE,

 bEnableAxis0:= TRUE,

 bEnableAxis1:=TRUE ,

 bEnableAxis2:= ,

 bEnableAxis3:= ,

 Error=> ,

 ErrorID=>);

AX series programmable controller software manual Function module command

-157-

A.3.11.2 Time sequence description

...

CnA

CnB
...

m+1 m+2 m+3 ... n-1 nCnt[n] m
m+rati

on

m+rati

on+1

m+rati

on+2

m+rati

on+3

Z_comp_enable[

n]

CnZ

m-1

Figure A-29 Compensation function timing diagram

Note:

n indicates the nth channel, 0 =< n <= 3. Z_comp_enable[n] indicates the Z compensation function enabling of the nth

channel with high level valid. Cnt[n] indicates the nth channel counter value. The above example illustrates the forward

counting compensation, which is quite similar to the reversed counting compensation. After the Z signal arrives, the

system executes the reverse compensation (minus ration) and then the reversed counting.

AX series programmable controller software manual Project Instance

-158-

Appendix B Project Instance

B.1 Controller and Goodrive20 Series VFD Configuration Example

The AX Series controller is now set up as the master and a Goodrive 20 Series VFD is set up as the slave. The controller

uses the Modbus /RTU communication protocol with a two-wire RS485 physical layer and communicates with the VFD via

the COM2 port. Let’s write a small program that reads and writes the functional parameters of the Goodrive20 VFD with

the upper computer.

Select File > New Project from the menu to create a new standard project. Set the device to INVT AX7x, and select

Structured Text (ST) as the programming language. Edit the project information as needed, as shown in the following

figure.

AX series programmable controller software manual Project Instance

-159-

Select Tool > Library Repository from the menu, and install the library file CmpModbusRTU_Master2_1.0.0.3.library,

as shown in the following figure.

Select Library Manager > Add Library to add the installed library to the application, as shown in the following figure.

AX series programmable controller software manual Project Instance

-160-

Double-click the PLC_PRG and enter the following codes on the statement editor:

PROGRAM PLC_PRG

VAR

 ModbusRTU_Master_Fun_COM2: ModbusRTU_Master_Fun_COM2;

 ModbusRTU_Master_Init_COM2: ModbusRTU_Master_Init_COM2;

 DatePtr2:ARRAY[0..0]OF INT;

 input_registers_Ptr2:ARRAY[0..9]OF INT;

 CoilDataPtr2:ARRAY[0..9]OF BOOL;

 input_bits_Ptr2:ARRAY[0..9]OF BOOL;

 CoilSingleData2:INT;

 Fun_Code2:INT;

 Addr2:UINT;

 DataCount2 : UINT：=1;

END_VAR

Enter the following code in the main code editor:

ModbusRTU_Master_Init_COM2(

 Execute2:= 1,

 Baud2:= 19200,

 Databits2:= 8,

 Stopbits2:=1 ,

 Parity2:=2 ,

 Timeout2:= 1000,

 bDone2=> ,

 Error2=> ,

AX series programmable controller software manual Project Instance

-161-

 ErrorID2=>);

ModbusRTU_Master_Fun_COM2(

 xExecute2:= 1,

 Fun_Code2:= Fun_Code2,

 Addr2:= Addr2,

 Slave2:= 1,

 DataCount2:= DataCount2,

 CoilDataPtr2:=ADR(CoilDataPtr2) ,

 CoilSingleData2:= CoilSingleData2,

 input_bits_Ptr2:= ADR(input_bits_Ptr2),

 input_registers_Ptr2:=ADR(input_registers_Ptr2) ,

 DataPtr2:=ADR(DatePtr2),

 Done2=> ,

 Error2=> ,

 ErrorID2=>);

Here are some descriptions of the program. The program calls two function blocks of the CmpModbusRTU_Master2

library, ModbusRTU_Master_Init_COM2 and ModbusRTU_Master_Fun_COM2. ModbusRTU_Master_Init_COM2 is used

to initialize the RTU Master2, where the baud rate is set to 19200, the data bit is 8, the stop bit is 1, the check bit is even

check, and the timeout time is 1000ms. ModbusRTU_Master_Fun_COM2 is the enablement and specific application of

the function module. The variable Fun_Code2 is the standard Modbus function code, Addr2 is the address of the VFD

Goodrive20 function. For the address of other MODBUS functions, refer to the INVT Goodrive20 Series VFD product

manual. Slave2 indicates the VFD slave address, which is set to 1 here.

Connect the VFD and the controller with the two-wire RS485, and then start the VFD. Set the function code P00.01 to 2

through the VFD keypad, so that the running command can be controlled by the upper computer through communication

modes. Set P00.06 to 8 to select the MODBUS communication mode. Set the serial communication parameters of group

P14 to make it consistent with the initial parameter settings of the upper computer, including baud rate, data bit, parity bit,

slave address, timeout time.

Click the button on the toolbar to compile the code. After compiling, click the button on the toolbar to log in
to the controller. Check that the controller digital tube has no error, the VFD Goodrive20 is connected to the controller
smoothly, and the communication is normal. The upper computer interface is shown in the figure.

AX series programmable controller software manual Project Instance

-162-

Now we take an example of the read operation. Write the value to the variable in the login state. Write 3 to the Fun_Code,

which means 03H function code Read Holding Registers. Write 16#3002 to the Addr, which means that one address is

read from 3002H. The value 3335 can be read from the array DataPtr2 (i.e. 3002H address), which means the bus voltage

is 333.5V with reference to the VFD product manual. Similarly, write 3 to the Fun_Code, which means 03H function code

Read Holding Registers. Writet 16#2100 to the Addr. The value 3 can be read from the array DataPtr2 (i.e. 2100H

address), which means the VFD is down with reference to the VFD product manual.

AX series programmable controller software manual Project Instance

-163-

Now we take an example of the write operation. Write the value to the variable in the login state. Write 6 to the Fun_Code,

which means 06H function code Write Single Register. Write 16#0003 to the Addr, which means to write a value to the

address 0003H. Referring to the VFD product manual, 0003H is the address of the maximum output frequency of the VFD

with a default value of 50.00 HZ. Before writing the value of the address, the value of the address 0003H in the upper

computer is 5000 which is obtained by 50.00Hz multiplied by the scale value of 100. If the maximum output frequency of

the VFD is set to 100Hz, write the 0003H with value 100Hz*100, that is, 10000. After that, the value of P00.03 will change

from 50.00 to 100.00, indicating that the controller wrote successfully to the VFD. See the figure.

AX series programmable controller software manual Project Instance

-164-

B.2 Controller and DA200 Series Servo Drive Configuration Example

In this section, we will write a program to control four DA200 series servo drives to drive four motor axes for constant

forward and reverse motion.

Select File > New Project from the menu to create a new standard project. Set the device to INVT AX7x, and select

Structured Text (ST) as the programming language. Edit the project information as needed, as shown in the following

figure.

AX series programmable controller software manual Project Instance

-165-

Right click the device from the device panel and select Add Device to add the EtherCAT master. Select EtherCAT Master

SoftMotion with a version of 3.5.15.0, as shown in the following figure.

Right click the device EtherCAT Master SoftMotion from the device panel and select Add Device to add 4 servo drives.

Select INVT_DA200_171, as shown in the following figure.

AX series programmable controller software manual Project Instance

-166-

Right click an INVT_DA200_171 device in the device panel and select Add SoftMotion CiA402 Axis. Preform the same

procedure for the remaining 3 INVT_DA200_171 devices, as shown in the figure.

Double-click the PLC_PRG and enter the following codes on the statement editor:

PROGRAM PLC_PRG

AX series programmable controller software manual Project Instance

-167-

VAR

 iStatus: INT;

 MC_Power_0: MC_Power;

 MC_Power_1: MC_Power;

 MC_Power_2: MC_Power;

 MC_Power_3: MC_Power;

 MC_MoveAbsolute_0: MC_MoveAbsolute;

 MC_MoveAbsolute_1: MC_MoveAbsolute;

 MC_MoveAbsolute_2: MC_MoveAbsolute;

 MC_MoveAbsolute_3: MC_MoveAbsolute;

END_VAR

Enter the following code in the main code editor:

CASE iStatus OF

0:

MC_Power_0(Axis:= SM_Drive_GenericDSP402, Enable:= TRUE, bRegulatorOn:= TRUE,

bDriveStart:=TRUE ,);

MC_Power_1(Axis:= SM_Drive_GenericDSP402_1, Enable:= TRUE, bRegulatorOn:= TRUE,

bDriveStart:=TRUE ,);

MC_Power_2(Axis:= SM_Drive_GenericDSP402_2, Enable:= TRUE, bRegulatorOn:= TRUE,

bDriveStart:=TRUE ,);

MC_Power_3(Axis:= SM_Drive_GenericDSP402_3, Enable:= TRUE, bRegulatorOn:= TRUE,

bDriveStart:=TRUE ,);

IF MC_Power_0.Status AND MC_Power_1.Status AND MC_Power_2.Status AND MC_Power_3.Status

 THEN

 iStatus:=iStatus+1;

END_IF

1:

MC_MoveAbsolute_0(Axis:=SM_Drive_GenericDSP402 , Execute:= TRUE, Position:=50 , Velocity:=3 ,

Acceleration:= 2, Deceleration:= 100,);

MC_MoveAbsolute_1(Axis:=SM_Drive_GenericDSP402_1, Execute:= TRUE, Position:=50 ,

Velocity:=3 , Acceleration:= 2, Deceleration:=100,);

MC_MoveAbsolute_2(Axis:=SM_Drive_GenericDSP402_2, Execute:= TRUE, Position:=50 ,

Velocity:=3 , Acceleration:= 2, Deceleration:=100,);

MC_MoveAbsolute_3(Axis:=SM_Drive_GenericDSP402_3, Execute:= TRUE, Position:=50 ,

Velocity:=3 , Acceleration:= 2, Deceleration:=100,);

IF MC_MoveAbsolute_0.Done AND MC_MoveAbsolute_1.Done AND MC_MoveAbsolute_2.Done AND

MC_MoveAbsolute_3.Done THEN

 MC_MoveAbsolute_0(Axis:=SM_Drive_GenericDSP402 , Execute:= FALSE,);

AX series programmable controller software manual Project Instance

-168-

 MC_MoveAbsolute_1(Axis:=SM_Drive_GenericDSP402_1 , Execute:= FALSE,);

 MC_MoveAbsolute_2(Axis:=SM_Drive_GenericDSP402_2 , Execute:= FALSE,);

 MC_MoveAbsolute_3(Axis:=SM_Drive_GenericDSP402_3 , Execute:= FALSE,);

 iStatus:=iStatus+1;

END_IF

2:

MC_MoveAbsolute_0(Axis:=SM_Drive_GenericDSP402 , Execute:= TRUE, Position:=0 , Velocity:=3,

Acceleration:= 2, Deceleration:= 100,);

MC_MoveAbsolute_1(Axis:=SM_Drive_GenericDSP402_1, Execute:= TRUE, Position:=0 , Velocity:=3 ,

Acceleration:= 2, Deceleration:=100,);

MC_MoveAbsolute_2(Axis:=SM_Drive_GenericDSP402_2, Execute:= TRUE, Position:=0 , Velocity:=3,

Acceleration:= 2, Deceleration:=100,);

MC_MoveAbsolute_3(Axis:=SM_Drive_GenericDSP402_3, Execute:= TRUE, Position:=0 , Velocity:=3 ,

Acceleration:= 2, Deceleration:=100,);

IF MC_MoveAbsolute_0.Done AND MC_MoveAbsolute_1.Done AND MC_MoveAbsolute_2.Done AND

MC_MoveAbsolute_3.Done THEN

 MC_MoveAbsolute_0(Axis:=SM_Drive_GenericDSP402 , Execute:= FALSE,);

 MC_MoveAbsolute_1(Axis:=SM_Drive_GenericDSP402_1 , Execute:= FALSE,);

 MC_MoveAbsolute_2(Axis:=SM_Drive_GenericDSP402_2 , Execute:= FALSE,);

 MC_MoveAbsolute_3(Axis:=SM_Drive_GenericDSP402_3 , Execute:= FALSE,);

iStatus:=1;

END_IF

END_CASE

The main body of the program takes the form of a state machine that determines which part of the code to execute

through the value of iStatus. When the program starts, the iStatus value is 0 and the program initializes the MC_Power

function block and enables the corresponding motor shaft. If the enabling is successful, the iStatus value is 1 and the

program enters the next state. When the iStatus value is 1, the MC_MoveAbsolute function block is executed, and the

motor rotates to the specified position at the specified speed. If the motor moves normally to the specified position, the

iStatus value is increased by 1, and the motor enters the next state. When the iStatus value is 2, execute the

MC_MoveAbsolute function block in the other direction. The motor continues to rotate to the specified position at the

speed specified by the function block. If the motor moves normally to the specified position, the iStatus value is reset to 1.

The procedure is executed repeatedly to implement the forward and reverse movement of the motor.

Double-click EtherCAT Master SoftMotion from the device panel and click Browse to select the EtherCAT

communication network eth0. Select the distributed clock as needed. In this example, select 4000us for the cycle time.

See the figure.

AX series programmable controller software manual Project Instance

-169-

Click the button on the toolbar to compile the code. After compiling, click the button on the toolbar to log in
to the controller. The servo starts normally, the motor runs smoothly, and the upper computer interface is shown in the
following figure.

AX series programmable controller software manual Project Instance

-170-

Double-click INVT_DA200_171 from the device panel to view or set the current motor running parameters in the I/O

mapping interface. See the figure.

Select Device > PLCShell. Click the button at the bottom right corner and select prcload. Then the CPU load rate

of the current controller will be shown as follows.

AX series programmable controller software manual Project Instance

-171-

To observe the operation of the motor shaft in an intuitive way and track the actual position of the shaft, create a new trace.

Right click Application and select Add Object > Trace. Set the task attribute to EtherCAT_Task, and add

PLC_PRG.MC_Power_0.Axis.fActPosition and PLC_PRG.MC_Power_0.Axis.fActVelocity variables in Trace. Adjust

the display properties of the coordinates appropriately. Right click the graph and select Download Trace to track the

actual position and actual speed of the motor, as shown in the following figure.

6 6 0 0 1 - 0 0 7 5 9

202111 (V1.2)

	Preface
	Target audience
	Applicable product
	Online support

	Contents
	1 Product Introduction
	1.1 AX70 series programmable controller
	1.1.1 Overview
	1.1.2 Product configuration and module description
	1.1.3 System application process

	1.2 Programming platform
	1.2.1 Invtmatic Studio
	1.2.2 Software programming interface

	1.3 PLCopen specification

	2 Getting Started
	2.1 Software installation and uninstallation
	2.1.1 Software obtaining
	2.1.2 Software installation requirements
	2.1.3 Preparing
	2.1.4 Installing the software
	2.1.5 Uninstalling the software

	2.2 AX70 series hardware connection
	2.3 PC communication configuration
	2.4 Project creation
	2.4.1 Starting the programming environment
	2.4.2 Creating new project

	2.5 Typical steps of project writing
	2.6 Examples of program writing and debugging
	2.6.1 Adding devices
	2.6.2 Writing a function to handle POU
	2.6.3 Setting motor parameters
	2.6.4 Writing motor positive and reverse
	2.6.5 Compiling user program
	2.6.6 Running monitor program

	3 Network Configuration
	3.1 ModbusTCP
	3.1.1 ModbusTCP_Master
	3.1.2 ModbusTCP_Slave

	3.2 ModbusRTU
	3.2.1 ModbusRTU_Master
	3.2.2 ModbusRTU_Slave

	3.3 EtherCAT master node
	3.4 CANopen
	3.4.1 CANopen master node configuration
	3.4.1.1 Master node usage process
	3.4.1.2 Adding CANopen management device
	3.4.1.3 Adding CANopen slave node

	3.4.2 Parameter configuration of CANopen master

	4 Module Configuration
	4.1 CPU module
	4.2 High speed I/O module
	4.2.1 Creating high speed I/O module project
	4.2.2 Function description of input port
	4.2.2.1 Common input function
	4.2.2.2 Counting function
	4.2.2.3 Trigger, latch and Z-signal function
	4.2.2.4 Positive and negative limit zero function
	4.2.2.5 Pulse width measurement function

	4.2.3 Output Port Function Description
	4.2.3.1 Common output function
	4.2.3.2 High speed pulse output function
	4.2.3.3 Output comparison function

	4.2.4 High-speed I/O mapping table
	4.2.4.1 General input value
	4.2.4.2 Version
	4.2.4.3 Input terminal function configuration
	4.2.4.4 Counting mode configuration
	4.2.4.5 Filter parameters
	4.2.4.6 Output terminal function configuration
	4.2.4.7 Common output value
	4.2.4.8 High-speed pulse output function
	4.2.4.9 Global interrupt enable
	4.2.4.10 Interrupt enable
	4.2.4.11 Interrupt mode

	4.2.5 Interrupt instruction
	4.2.5.1 External interrupt instruction
	4.2.5.2 Probe interrupt instruction
	4.2.5.3 Comparison interrupt instruction

	4.3 Digital input/output module
	4.3.1 Creating a project for digital input/output module
	4.3.2 Variable definition and use

	4.4 Analog input/output module
	4.4.1 Creating a project for analog input/output module
	4.4.2 Variable definition and use

	4.5 Temperature module
	4.5.1 Creating a project for temperature module
	4.5.2 Variable definition and use
	4.5.3 Temperature module

	4.6 Communication module
	4.6.1 Digital input module
	4.6.2 Digital output module
	4.6.3 Analog input module
	4.6.4 Analog output module
	4.6.5 Temperature module

	4.7 Priority setting of each module (recommended value)
	4.7.1 Setting priority
	4.7.2 Configuring sub-device bus cycle options

	5 Device Diagnosis
	5.1 Fault indicator
	5.1.1 System and bus fault indicator
	5.1.2 High-speed input/output indicator

	5.2 Fault code

	6 Controller Program Structure and Execution
	6.1 Program structure
	6.2 Task
	6.3 Program execution
	6.4 Task execution type
	6.5 Task priority
	6.6 Operation of multiple subprograms

	7 EtherCAT Bus Motion Control
	7.1 EtherCAT operation principle
	7.1.1 Protocol introduction
	7.1.2 Work counter WKC
	7.1.3 Addressing mode
	7.1.3.1 Segment addressing
	7.1.3.2 Device addressing

	7.1.4 Distributed clocks
	7.1.4.1 Concepts
	7.1.4.2 Clock synchronization process

	7.1.5 EtherCAT cable redundancy

	7.2 EtherCAT communication mode
	7.2.1 Periodic process data communication
	7.2.2 Non-periodic mailbox data communication

	7.3 EtherCAT state machine
	7.4 EtherCAT servo drive controller application protocol
	7.4.1 EtherCAT-based CAN application protocol (CoE)
	7.4.1.1 CoE object dictionary
	7.4.1.2 CoE periodic process data communication (PDO)
	7.4.1.3 CoE non-periodic process data communication (SDO)

	7.4.2 Servo drive profile according to IEC 61800-7-204 (SERCOS)
	7.4.2.1 SoE state machine
	7.4.2.2 IDN inheritance
	7.4.2.3 SoE periodic process data
	7.4.2.4 SoE non-periodic service channels

	8 Application Programming
	8.1 Single axis control
	8.1.1 Single axis control programming description
	8.1.2 MC function blocks commonly used for single-axis control

	8.2 Cam synchronization control
	8.2.1 Periodic mode of the cam table
	8.2.2 Input method of cam table
	8.2.3 Data structure of cam table
	8.2.4 CAM table reference and switch

	Appendix A Function module command
	A.1 ModbusRTU command library
	A.1.1 Definition and use of ModbusRTU master command library variables
	A.1.1.1 Variable definition
	A.1.1.2 How to use

	A.1.2 Definition and use of ModbusRTU slave library variables
	A.1.2.1 Variable definition
	A.1.2.2 How to use

	A.2 ModbusTCP command library
	A.2.1 Definition and use of ModbusTCP master command library variables
	A.2.1.1 Variable definition
	A.2.1.2 How to use

	A.2.2 Definition and use of ModbusTCP slave command library variables
	A.2.2.1 Variable definition
	A.2.2.2 How to use

	A.3 CmpHSIO_C library description
	A.3.1 Counter_HP
	A.3.1.1 Single pulse counting
	A.3.1.2 Quadrature encoder pulses
	A.3.1.3 Timing counting
	A.3.1.4 Pulse + direction counting

	A.3.2 LatchValue_HP
	A.3.2.1 Function configuration
	A.3.2.2 Time sequence description

	A.3.3 PresetValue_HP
	A.3.3.1 Function configuration
	A.3.3.2 Time sequence description

	A.3.4 PulsewidthMeasure_HP
	A.3.4.1 Function configuration
	A.3.4.2 Time sequence description

	A.3.5 SetCompareInterruptParam_HP
	A.3.5.1 Function configuration

	A.3.6 TimingSampling_HP
	A.3.6.1 Function configuration
	A.3.6.2 Time sequence description

	A.3.7 CompareSingleValue_HP
	A.3.7.1 Function configuration
	A.3.7.2 Time sequence description

	A.3.8 CompareMoreValue_HP
	A.3.8.1 Function configuration
	A.3.8.2 Time sequence description

	A.3.9 GetVersion_HP
	A.3.10 Zphase_Clearpulse_HP
	A.3.10.1 Function configuration
	A.3.10.2 Time sequence description

	A.3.11 Zphase_Compensate_HP
	A.3.11.1 Function configuration
	A.3.11.2 Time sequence description

	Appendix B Project Instance
	B.1 Controller and Goodrive20 Series VFD Configuration Example
	B.2 Controller and DA200 Series Servo Drive Configuration Example
	转曲封底
	页 1

	转曲封面
	页 1

